JEE MAIN - Mathematics (2017 - 8th April Morning Slot - No. 19)

The locus of the point of intersection of the straight lines,

tx $$-$$ 2y $$-$$ 3t = 0

x $$-$$ 2ty + 3 = 0 (t $$ \in $$ R), is :
an ellipse with eccentricity $${2 \over {\sqrt 5 }}$$
an ellipse with the length of major axis 6
a hyperbola with eccentricity $$\sqrt 5 $$
a hyperbola with the length of conjugate axis 3

Explanation

Here, tx $$-$$ 2y $$-$$ 3t = 0  &  x $$-$$ 2ty + 3 = 0

On solving, we get;

y = $${{6t} \over {2{t^2} - 2}}$$ = $${{3t} \over {{t^2} - 1}}$$ & x = $${{3{t^2} + 3} \over {{t^2} - 1}}$$

Put    t = tan$$\theta $$

$$ \therefore $$   x = $$-$$ 3 sec 2$$\theta $$  &  2y = 3 ($$-$$ tan 2$$\theta $$)

$$ \because $$   sec22$$\theta $$ $$-$$ tan22$$\theta $$ = 1

$$ \Rightarrow $$    $${{{x^2}} \over 9}$$ $$-$$ $${{{y^2}} \over {9/4}}$$ = 1

which represents at hyperbola

$$ \therefore $$   a2 = 9  &  b2 = 9/4

$$\lambda $$(T.A.) = 6; e2 = 1 + $${{9/4} \over 9}$$ = 1 + $${1 \over 4}$$ $$ \Rightarrow $$ e = $${{\sqrt 5 } \over 2}$$

Comments (0)

Advertisement