JEE MAIN - Mathematics (2017 - 8th April Morning Slot - No. 15)

The area (in sq. units) of the parallelogram whose diagonals are along the vectors $$8\widehat i - 6\widehat j$$ and $$3\widehat i + 4\widehat j - 12\widehat k,$$ is :
26
65
20
52

Explanation

When diagonal $${\overrightarrow {{d_1}} }$$ and $${\overrightarrow {{d_2}} }$$ are given of a parallelogram then the area of parallelogram = $${1 \over 2}\left| {\overrightarrow {{d_1}} \times \overrightarrow {{d_2}} } \right|$$

Given, $${\overrightarrow {{d_1}} }$$ = 8$$\widehat i$$ $$-$$ 6$$\widehat j$$ + 0$$\widehat k$$

and    $${\overrightarrow {{d_2}} }$$ = 3$$\widehat i$$ + 4$$\widehat j$$ $$-$$ 12$$\widehat k$$

$$\therefore\,\,\,$$ $${\overrightarrow {{d_1}} }$$ $$ \times $$ $${\overrightarrow {{d_2}} }$$   =   $$\left| {\matrix{ {\widehat i} & {\widehat j} & {\widehat k} \cr 8 & { - 6} & 0 \cr 3 & 4 & { - 12} \cr } } \right|$$

= 72 $$\widehat i$$ $$-$$ ($$-$$ 96) $$\widehat j$$ + 50$$\widehat k$$

= 72 $$\widehat i$$ + 96 $$\widehat j$$ + 50 $$\widehat k$$

$$\therefore\,\,\,$$ $$\left| {\overrightarrow {{d_1}} \times \overrightarrow {{d_2}} } \right|$$ = $$\sqrt {{{72}^2} + {{96}^2} + {{50}^2}} $$

= $$\sqrt {16900} $$

= 130

$$\therefore\,\,\,$$ Area of parallelogram = $${1 \over 2}\left| {\overrightarrow {{d_1}} \times \overrightarrow {{d_2}} } \right|$$ = $${1 \over 2}$$ $$ \times $$ 130 = 65

Comments (0)

Advertisement