JEE MAIN - Mathematics (2017 - 8th April Morning Slot - No. 1)
2x + 4y $$-$$ $$\lambda $$z = 0
4x + $$\lambda $$y + 2z = 0
$$\lambda $$x + 2y + 2z = 0
has infinitely many solutions, is :
Explanation
The system of equations can be written in the matrix form as
$$\left[ {\matrix{ 2 & 4 & { - \lambda } \cr 4 & \lambda & 2 \cr \lambda & 2 & 2 \cr } } \right]\left[ {\matrix{ x \cr y \cr z \cr } } \right] = \left[ {\matrix{ 0 \cr 0 \cr 0 \cr } } \right]$$
The system has infinite solutions; thus, we get
$$\left| {\matrix{ 2 & 4 & { - \lambda } \cr 4 & \lambda & 2 \cr \lambda & 2 & 2 \cr } } \right| = 0$$
$$ \Rightarrow 0 = 2(2\lambda - 4) - 4(8 - 2\lambda ) - \lambda (8 - {\lambda ^2})$$
$$ \Rightarrow 4\lambda - 8 - 32 + 8\lambda - 8\lambda + {\lambda ^3} = 0$$
$$ \Rightarrow {\lambda ^3} + 4\lambda - 40 = 0$$
We can solve this by graphical method:
$$y = {x^3} + 4x - 40$$
For x = 0, y = $$-$$40: If we take y = $$-$$40, then we have
$$ - 40 = {x^3} + 4x - 40$$
$$ \Rightarrow {x^3} + 4x = 0$$
$$ \Rightarrow x({x^2} + 4) = 0$$
$$ \Rightarrow x = 0,{x^2} + 4 = 0$$
$$ \Rightarrow x = \pm \,2i$$
The given equation of line intersects x only at one point; therefore, the real value of $$\lambda$$ is only one.
Comments (0)
