JEE MAIN - Mathematics (2017 (Offline) - No. 8)
If $$5\left( {{{\tan }^2}x - {{\cos }^2}x} \right) = 2\cos 2x + 9$$,
then the value of $$\cos 4x$$ is :
then the value of $$\cos 4x$$ is :
$${1 \over 3}$$
$${2 \over 9}$$
$$ - {7 \over 9}$$
$$ - {3 \over 5}$$
Explanation
Given that,
$$5\left( {{{\tan }^2}x - {{\cos }^2}x} \right) = 2\cos 2x + 9$$
$$ \Rightarrow 5\left( {{{{{\sin }^2}x} \over {{{\cos }^2}x}} - {{\cos }^2}x} \right) = 2\left( {2{{\cos }^2}x - 1} \right) + 9$$
Let $${\cos ^2}x = t,$$ then we have
$$5\left( {{{1 - t} \over t} - t} \right) = 2\left( {2t - 1} \right) + 9$$
$$ \Rightarrow 5\left( {{{1 - t - {t^2}} \over t}} \right) = 4t - 2 + 9$$
$$ \Rightarrow 5 - 5t - 5{t^2} = 4{t^2} + 7t$$
$$ \Rightarrow 9{t^2} + 12t - 5 = 0$$
$$ \Rightarrow 9{t^2} + 15t - 3t - 5 = 0$$
$$ \Rightarrow 3t\left( {3t + 5} \right) - 1\left( {3t + 5} \right) = 0$$
$$ \Rightarrow \left( {3t + 5} \right)\left( {3t - 1} \right) = 0$$
$$\therefore$$ $$t = {1 \over 3}$$ and $$t = - {5 \over 3}$$
If $$t = - {5 \over 3}$$ then $${\cos ^2}x$$ is negative
So , $$t$$ can not be $$ - {5 \over 3}$$.
So, correct value of $$t = {1 \over 3}$$ then $$\cos {}^2x = t = {1 \over 3}$$
$$\therefore\,\,\,$$ $$\cos 4x$$
$$ = 2{\cos ^2}2x - 1$$
$$ = 2{\left[ {2{{\cos }^2}x - 1} \right]^2} - 1$$
$$ = 2.{\left[ {2.{1 \over 3} - 1} \right]^2} - 1$$
$$ = 2.{\left( { - {1 \over 3}} \right)^2} - 1$$
$$ = {2 \over 9} - 1$$
$$ = - {7 \over 9}$$
$$5\left( {{{\tan }^2}x - {{\cos }^2}x} \right) = 2\cos 2x + 9$$
$$ \Rightarrow 5\left( {{{{{\sin }^2}x} \over {{{\cos }^2}x}} - {{\cos }^2}x} \right) = 2\left( {2{{\cos }^2}x - 1} \right) + 9$$
Let $${\cos ^2}x = t,$$ then we have
$$5\left( {{{1 - t} \over t} - t} \right) = 2\left( {2t - 1} \right) + 9$$
$$ \Rightarrow 5\left( {{{1 - t - {t^2}} \over t}} \right) = 4t - 2 + 9$$
$$ \Rightarrow 5 - 5t - 5{t^2} = 4{t^2} + 7t$$
$$ \Rightarrow 9{t^2} + 12t - 5 = 0$$
$$ \Rightarrow 9{t^2} + 15t - 3t - 5 = 0$$
$$ \Rightarrow 3t\left( {3t + 5} \right) - 1\left( {3t + 5} \right) = 0$$
$$ \Rightarrow \left( {3t + 5} \right)\left( {3t - 1} \right) = 0$$
$$\therefore$$ $$t = {1 \over 3}$$ and $$t = - {5 \over 3}$$
If $$t = - {5 \over 3}$$ then $${\cos ^2}x$$ is negative
So , $$t$$ can not be $$ - {5 \over 3}$$.
So, correct value of $$t = {1 \over 3}$$ then $$\cos {}^2x = t = {1 \over 3}$$
$$\therefore\,\,\,$$ $$\cos 4x$$
$$ = 2{\cos ^2}2x - 1$$
$$ = 2{\left[ {2{{\cos }^2}x - 1} \right]^2} - 1$$
$$ = 2.{\left[ {2.{1 \over 3} - 1} \right]^2} - 1$$
$$ = 2.{\left( { - {1 \over 3}} \right)^2} - 1$$
$$ = {2 \over 9} - 1$$
$$ = - {7 \over 9}$$
Comments (0)
