JEE MAIN - Mathematics (2017 (Offline) - No. 19)

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{\cot x - \cos x} \over {{{\left( {\pi - 2x} \right)}^3}}}$$ equals
$${1 \over {16}}$$
$${1 \over 8}$$
$${1 \over {4}}$$
$${1 \over {24}}$$

Explanation

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{\cot x - \cos x} \over {{{\left( {\pi - 2x} \right)}^3}}}$$

= $$\mathop {\lim }\limits_{x \to {\pi \over 2}} {1 \over 8}.{{\cos x\left( {1 - \sin x} \right)} \over {\sin x{{\left( {{\pi \over 2} - x} \right)}^3}}}$$

Put $${{\pi \over 2} - x}$$ = t

$$ \Rightarrow $$ x $$ \to $$ $${{\pi \over 2}}$$

t $$ \to $$ 0

= $$\mathop {\lim }\limits_{t \to 0} {1 \over 8}.{{\cos \left( {{\pi \over 2} - t} \right)\left( {1 - \sin \left( {{\pi \over 2} - t} \right)} \right)} \over {\sin \left( {{\pi \over 2} - t} \right){{\left( {{\pi \over 2} - {\pi \over 2} + t} \right)}^3}}}$$

= $$\mathop {{1 \over 8}\lim }\limits_{t \to 0} {{\sin t\left( {1 - \cos t} \right)} \over {\cos t{{\left( t \right)}^3}}}$$

= $$\mathop {{1 \over 8}\lim }\limits_{t \to 0} {{\sin t\left( {2{{\sin }^2}{t \over 2}} \right)} \over {\cos t{{\left( t \right)}^3}}}$$

= $$\mathop {{1 \over 4}\lim }\limits_{t \to 0} {{\sin t\left( {{{\sin }^2}{t \over 2}} \right)} \over {\cos t{{\left( t \right)}^3}}}$$

= $$\mathop {\lim }\limits_{t \to 0} \left( {{{\sin t} \over t}} \right){\left( {{{\sin {t \over 2}} \over {{t \over 2}}}} \right)^2}{1 \over {\cos t}}{1 \over 4}$$

= $${1 \over 4} \times {1 \over 4}$$

= $${1 \over {16}}$$

Comments (0)

Advertisement