JEE MAIN - Mathematics (2017 (Offline) - No. 14)

The area (in sq. units) of the region

$$\left\{ {\left( {x,y} \right):x \ge 0,x + y \le 3,{x^2} \le 4y\,and\,y \le 1 + \sqrt x } \right\}$$ is
$${3 \over 2}$$
$${7 \over 3}$$
$${5 \over 2}$$
$${59 \over 12}$$

Explanation

JEE Main 2017 (Offline) Mathematics - Area Under The Curves Question 126 English Explanation
Area of shaded region

= $$\int\limits_0^1 {\left( {1 + \sqrt x } \right)dx} + \int\limits_1^2 {\left( {3 - x} \right)dx} - \int\limits_0^2 {{{{x^2}} \over 4}dx} $$

= $$\left[ x \right]_0^1 + \left[ {{{{x^{{3 \over 2}}}} \over {{3 \over 2}}}} \right]_0^1$$ + $$3\left[ x \right]_1^2 - \left[ {{{{x^2}} \over 2}} \right]_1^2 - \left[ {{{{x^3}} \over {12}}} \right]_0^2$$

= $${5 \over 2}$$ sq. unit

Comments (0)

Advertisement