JEE MAIN - Mathematics (2017 (Offline) - No. 10)

Let $$\overrightarrow a = 2\widehat i + \widehat j -2 \widehat k$$ and $$\overrightarrow b = \widehat i + \widehat j$$.

Let $$\overrightarrow c $$ be a vector such that $$\left| {\overrightarrow c - \overrightarrow a } \right| = 3$$,

$$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right| = 3$$ and the angle between $$\overrightarrow c $$ and $\overrightarrow a \times \overrightarrow b$ is $$30^\circ $$.

Then $$\overrightarrow a .\overrightarrow c $$ is equal to :
2
5
$${1 \over 8}$$
$${{25} \over 8}$$

Explanation

Given:

$$\overrightarrow a = 2\widehat i + \widehat j - 2\widehat k,\,\,\overrightarrow b = \widehat i + \widehat j$$

$$ \Rightarrow $$  $$\left| {\overrightarrow a } \right| = 3$$

$$ \therefore $$  $$\overrightarrow a \times \overrightarrow b = 2\widehat i - 2\widehat j + \widehat k$$

$$\left| {\overrightarrow a \times \overrightarrow b } \right| = \sqrt {{2^2} + {2^2} + {1^2}} = 3$$

We have $$\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c = \left| {\overrightarrow a \times \overrightarrow b } \right|\left| {\overrightarrow c } \right|\sin 30^\circ$$

$$ \Rightarrow $$  $$\left| {\left( {\overrightarrow a \times \overrightarrow b } \right) \times \overrightarrow c } \right| = 3\left| {\overrightarrow c } \right|.{1 \over 2}$$

$$ \Rightarrow $$  $$3 = 3\left| {\overrightarrow c } \right|.{1 \over 2}$$

$$ \therefore $$  $$\left| {\overrightarrow c } \right| = 2$$

Now  $$\left| {\overrightarrow c - \overrightarrow a } \right| = 3$$

On squaring, we get

$$ \Rightarrow $$  $${c^2} + {a^2} - 2 - \overrightarrow c .\overrightarrow a = 9$$

$$ \Rightarrow $$  $$4 + 9 - 2 - \overrightarrow a .\overrightarrow c = 9$$

$$ \Rightarrow $$  $$\overrightarrow a .\overrightarrow c = 2$$     [$$ \because $$  $$\overrightarrow c .\overrightarrow a \,\, = \,\,\overrightarrow a .\overrightarrow c $$]

Comments (0)

Advertisement