JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 6)
If P = $$\left[ {\matrix{
{{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr
{ - {1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr
} } \right],A = \left[ {\matrix{
1 & 1 \cr
0 & 1 \cr
} } \right]\,\,\,$$
Q = PAPT, then PT Q2015 P is :
Q = PAPT, then PT Q2015 P is :
$$\left[ {\matrix{
0 & {2015} \cr
0 & 0 \cr
} } \right]$$
$$\left[ {\matrix{
{2015} & 1 \cr
0 & {2015} \cr
} } \right]$$
$$\left[ {\matrix{
{2015} & 0 \cr
1 & {2015} \cr
} } \right]$$
$$\left[ {\matrix{
1 & {2015} \cr
0 & 1 \cr
} } \right]$$
Explanation
P = $$\left[ {\matrix{
{{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr
{ - {1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr
} } \right]$$
$$ \therefore $$ PT = $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & { - {1 \over 2}} \cr {{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
As PPT = PTP = I
given, Q = PAPT
$$ \therefore $$ PTQ = PTP APT
$$ \Rightarrow $$ PTQ = IAPT = APT [ as PTP = I]
Now,
PT Q2015 P
= PTQ . Q2014 . P
= APT Q2014 P
= APT . Q . Q2013 . P
= A2PT . Q2013 . P
.
.
.
= A2014 . PTQP
= A2014 . APTP
= A2015
As A = $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$
$$ \therefore $$ A2 = $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$
A3 = $$\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$ $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 & 3 \cr 0 & 1 \cr } } \right]$$
A2015 = $$\left[ {\matrix{ 1 & {2015} \cr 0 & 1 \cr } } \right]$$
$$ \therefore $$ PT = $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & { - {1 \over 2}} \cr {{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$
As PPT = PTP = I
given, Q = PAPT
$$ \therefore $$ PTQ = PTP APT
$$ \Rightarrow $$ PTQ = IAPT = APT [ as PTP = I]
Now,
PT Q2015 P
= PTQ . Q2014 . P
= APT Q2014 P
= APT . Q . Q2013 . P
= A2PT . Q2013 . P
.
.
.
= A2014 . PTQP
= A2014 . APTP
= A2015
As A = $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$
$$ \therefore $$ A2 = $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$
A3 = $$\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$ $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$ = $$\left[ {\matrix{ 1 & 3 \cr 0 & 1 \cr } } \right]$$
A2015 = $$\left[ {\matrix{ 1 & {2015} \cr 0 & 1 \cr } } \right]$$
Comments (0)
