JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 6)

If P = $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr { - {1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right],A = \left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\,\,\,$$

Q = PAPT, then PT Q2015 P is :
$$\left[ {\matrix{ 0 & {2015} \cr 0 & 0 \cr } } \right]$$
$$\left[ {\matrix{ {2015} & 1 \cr 0 & {2015} \cr } } \right]$$
$$\left[ {\matrix{ {2015} & 0 \cr 1 & {2015} \cr } } \right]$$
$$\left[ {\matrix{ 1 & {2015} \cr 0 & 1 \cr } } \right]$$

Explanation

P = $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & {{1 \over 2}} \cr { - {1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr } } \right]$$

$$ \therefore $$   PT = $$\left[ {\matrix{ {{{\sqrt 3 } \over 2}} & { - {1 \over 2}} \cr {{1 \over 2}} & {{{\sqrt 3 } \over 2}} \cr  } } \right]$$

As    PPT = PTP = I

given, Q = PAPT

$$ \therefore $$   PTQ = PTP APT

$$ \Rightarrow $$   PTQ = IAPT = APT [ as    PTP = I]

Now,

PT  Q2015  P

=  PTQ   .   Q2014  .  P

=  APT  Q2014  P

=  APT  .  Q  .  Q2013  .  P

=  A2PT  .  Q2013  .  P

.

.

.
=  A2014  .  PTQP

=  A2014   .   APTP

=  A2015

As   A = $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$

$$ \therefore $$  A2 =   $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$   =  $$\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$

A3  =   $$\left[ {\matrix{ 1 & 2 \cr 0 & 1 \cr } } \right]$$ $$\left[ {\matrix{ 1 & 1 \cr 0 & 1 \cr } } \right]$$  =  $$\left[ {\matrix{ 1 & 3 \cr 0 & 1 \cr } } \right]$$

A2015  =  $$\left[ {\matrix{ 1 & {2015} \cr 0 & 1 \cr } } \right]$$

Comments (0)

Advertisement