JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 4)

The number of distinct real roots of the equation,

$$\left| {\matrix{ {\cos x} & {\sin x} & {\sin x} \cr {\sin x} & {\cos x} & {\sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right| = 0$$ in the interval $$\left[ { - {\pi \over 4},{\pi \over 4}} \right]$$ is :
4
3
2
1

Explanation

Given,

$$\left| {\matrix{ {\cos x} & {\sin x} & {\sin x} \cr {\sin x} & {\cos x} & {\sin x} \cr {\sin x} & {\sin x} & {\cos x} \cr } } \right| = 0$$

R1  $$ \to $$  R1  $$-$$  R3

R1  $$ \to $$  R2  $$-$$  R3

$$\left| {\matrix{ {\cos x - \sin x} & 0 & {\sin x - \cos x} \cr 0 & {\cos x - \sin x} & {\sin x - \cos x} \cr {\sin x} & {\sin x} & { \cos x} \cr } } \right| = 0$$

C3  $$ \to $$  C3  +  C2

$$\left| {\matrix{ {\cos x - \sin x} & 0 & {\sin x - \cos x} \cr 0 & {\cos x - \sin x} & 0 \cr {\sin x} & {\sin x} & {\sin x + \cos x} \cr } } \right| = 0$$

Expanding using first column,

(cosx $$-$$ sinx)(cos $$-$$ sinx) (sinx + cos x)

      + sinx (cosx $$-$$ sinx) (sinx $$-$$ cosx) = 0

$$ \Rightarrow $$   (cosx $$-$$ sinx)2 (sinx + cosx)

     $$+$$ sinx (cosx $$-$$ sinx)2 = 0

$$ \Rightarrow $$    (cosx $$-$$ sinx)2 (sinx + cosx $$+$$ sinx) = 0

$$ \Rightarrow $$    (2sinx + cosx )(cosx $$-$$ sinx)2 = 0

$$ \therefore $$   cosx = -2sinx   or  cosx   =  sinx

$$ \Rightarrow $$ tanx = $$ - {1 \over 2}$$ or tanx = 1

$$ \therefore $$ x = $$ - {\tan ^{ - 1}}\left( {{1 \over 2}} \right)$$, $${\pi \over 4}$$

$$ \therefore $$   Number of solutions   =  2

Comments (0)

Advertisement