JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 25)

If    $$\mathop {\lim }\limits_{x \to \infty } {\left( {1 + {a \over x} - {4 \over {{x^2}}}} \right)^{2x}} = {e^3},$$ then 'a' is equal to :
2
$${3 \over 2}$$
$${2 \over 3}$$
$${1 \over 2}$$

Explanation

Given,

$$\mathop {\lim }\limits_{x \to \propto } {\left( {1 + {a \over x} - {4 \over {{x^2}}}} \right)^{2x}} = {e^3}$$

So,   $$\mathop {\lim }\limits_{x \to \propto } {\left( {1 + {a \over x} - {4 \over {{x^2}}}} \right)^{2x}}\,\left[ {{1^ \propto }\,\,\,form} \right]$$

$$ = {e^{\mathop {\lim }\limits_{x \to \propto } \left[ {\left( {1 + {a \over x} - {4 \over {{x^2}}} - 1} \right)2x} \right]}}$$

$$ = {e^{\mathop {\lim }\limits_{x \to \propto } \left( {2a - {8 \over x}} \right)}}$$

$$ = {e^{2a}}$$

$$ \therefore $$   e2a = e3

$$ \therefore $$    2a = 3

$$ \Rightarrow $$   a $$=$$ $${3 \over 2}$$

Comments (0)

Advertisement