JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 24)
If the function
f(x) = $$\left\{ {\matrix{ { - x} & {x < 1} \cr {a + {{\cos }^{ - 1}}\left( {x + b} \right),} & {1 \le x \le 2} \cr } } \right.$$
is differentiable at x = 1, then $${a \over b}$$ is equal to :
f(x) = $$\left\{ {\matrix{ { - x} & {x < 1} \cr {a + {{\cos }^{ - 1}}\left( {x + b} \right),} & {1 \le x \le 2} \cr } } \right.$$
is differentiable at x = 1, then $${a \over b}$$ is equal to :
$${{\pi - 2} \over 2}$$
$${{ - \pi - 2} \over 2}$$
$${{\pi + 2} \over 2}$$
$$ - 1 - {\cos ^{ - 1}}\left( 2 \right)$$
Explanation
As f(x) is differentiable at x = 1
$$ \therefore $$ $$\mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {a + {{\cos }^{ - 1}}\left( {x + b} \right)} \right) = f(1)$$
$$ \Rightarrow $$ $$-$$1 $$=$$ a + cos$$-$$1(1 + b)
$$ \Rightarrow $$ cos$$-$$1 (1 + b) $$=$$ $$-$$1 $$-$$ a . . . . . .(1)
As f(x) is differentiable, so,
2 . H . D $$=$$ R . H . D
Here, L . H . D $$=$$ $$\mathop {\lim }\limits_{h \to 0} $$ $${{f\left( {1 - h} \right) - f\left( 1 \right)} \over { - h}}$$
$$ = \mathop {\lim }\limits_{h \to 0} {{ - \left( {1 - h} \right) - \left( { - 1} \right)} \over { - h}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{ - 1 + h + 1} \over { - h}}$$
$$=$$ $$ = \mathop {\lim }\limits_{x \to 0} {h \over { - h}}$$
$$=$$ $$-$$ 1
R. H. D $$ = \mathop {\lim }\limits_{x \to 0} {{f\left( {1 + h} \right) - f\left( 1 \right)} \over h}$$
$$ = \mathop {\lim }\limits_{h \to 0} {{a + {{\cos }^{ - 1}}\left( {1 + h + b} \right) - \left[ {a + {{\cos }^{ - 1}}\left( {1 + b} \right)} \right]} \over h}$$
$$ = \mathop {\lim }\limits_{h \to 0} {{{{\cos }^{ - 1}}\left( {1 + h + b} \right) - {{\cos }^{ - 1}}\left( {1 + b} \right)} \over h}\left[ {{0 \over 0}\,\,form\left. \, \right]} \right.$$
$$ = \mathop {\lim }\limits_{h \to 0} {{ - 1} \over {\sqrt {1 - {{\left( {1 + h + b} \right)}^2}} }}$$ [ Using L' Hospital Rule]
$$ = {{ - 1} \over {\sqrt {1 - {{\left( {1 + b} \right)}^2}} }}$$
$$ \therefore $$ $$ - 1 = {{ - 1} \over {\sqrt {1 - {{\left( {1 + b} \right)}^2}} }}$$
$$ \Rightarrow 1 - {\left( {1 + b} \right)^2} = 1$$
$$ \Rightarrow $$ $${\left( {1 + b} \right)^2} = 0$$
$$ \Rightarrow $$ $$b = - 1$$
putting value of b in equation (1), we get,
$${\cos ^{ - 1}}\left( {1 - 1} \right) = - 1 - a$$
$$ \Rightarrow $$ $${\pi \over 2} = - 1 - a$$
$$ \Rightarrow $$ $$a = - 1 - {\pi \over 2}$$
$$ \therefore $$ $${a \over b} = {{ - 1 - {\pi \over 2}} \over { - 1}} = 1 + {\pi \over 2} = {{\pi + 2} \over 2}$$
$$ \therefore $$ $$\mathop {\lim }\limits_{x \to {1^ - }} \left( { - x} \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {a + {{\cos }^{ - 1}}\left( {x + b} \right)} \right) = f(1)$$
$$ \Rightarrow $$ $$-$$1 $$=$$ a + cos$$-$$1(1 + b)
$$ \Rightarrow $$ cos$$-$$1 (1 + b) $$=$$ $$-$$1 $$-$$ a . . . . . .(1)
As f(x) is differentiable, so,
2 . H . D $$=$$ R . H . D
Here, L . H . D $$=$$ $$\mathop {\lim }\limits_{h \to 0} $$ $${{f\left( {1 - h} \right) - f\left( 1 \right)} \over { - h}}$$
$$ = \mathop {\lim }\limits_{h \to 0} {{ - \left( {1 - h} \right) - \left( { - 1} \right)} \over { - h}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{ - 1 + h + 1} \over { - h}}$$
$$=$$ $$ = \mathop {\lim }\limits_{x \to 0} {h \over { - h}}$$
$$=$$ $$-$$ 1
R. H. D $$ = \mathop {\lim }\limits_{x \to 0} {{f\left( {1 + h} \right) - f\left( 1 \right)} \over h}$$
$$ = \mathop {\lim }\limits_{h \to 0} {{a + {{\cos }^{ - 1}}\left( {1 + h + b} \right) - \left[ {a + {{\cos }^{ - 1}}\left( {1 + b} \right)} \right]} \over h}$$
$$ = \mathop {\lim }\limits_{h \to 0} {{{{\cos }^{ - 1}}\left( {1 + h + b} \right) - {{\cos }^{ - 1}}\left( {1 + b} \right)} \over h}\left[ {{0 \over 0}\,\,form\left. \, \right]} \right.$$
$$ = \mathop {\lim }\limits_{h \to 0} {{ - 1} \over {\sqrt {1 - {{\left( {1 + h + b} \right)}^2}} }}$$ [ Using L' Hospital Rule]
$$ = {{ - 1} \over {\sqrt {1 - {{\left( {1 + b} \right)}^2}} }}$$
$$ \therefore $$ $$ - 1 = {{ - 1} \over {\sqrt {1 - {{\left( {1 + b} \right)}^2}} }}$$
$$ \Rightarrow 1 - {\left( {1 + b} \right)^2} = 1$$
$$ \Rightarrow $$ $${\left( {1 + b} \right)^2} = 0$$
$$ \Rightarrow $$ $$b = - 1$$
putting value of b in equation (1), we get,
$${\cos ^{ - 1}}\left( {1 - 1} \right) = - 1 - a$$
$$ \Rightarrow $$ $${\pi \over 2} = - 1 - a$$
$$ \Rightarrow $$ $$a = - 1 - {\pi \over 2}$$
$$ \therefore $$ $${a \over b} = {{ - 1 - {\pi \over 2}} \over { - 1}} = 1 + {\pi \over 2} = {{\pi + 2} \over 2}$$
Comments (0)
