JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 23)
If $$\int {{{dx} \over {{{\cos }^3}x\sqrt {2\sin 2x} }}} = {\left( {\tan x} \right)^A} + C{\left( {\tan x} \right)^B} + k,$$
where k is a constant of integration, then A + B +C equals :
where k is a constant of integration, then A + B +C equals :
$${{21} \over 5}$$
$${{16} \over 5}$$
$${{7} \over 10}$$
$${{27} \over 10}$$
Explanation
$$\int {{{dx} \over {{{\cos }^3}x\sqrt {2\sin 2x} }}} $$
= $$\int {{{dx} \over {{{\cos }^3}x\sqrt {4\sin x\cos x} }}} $$
= $$\int {{{dx} \over {2{{\cos }^4}x\sqrt {\tan x} }}} $$
Let tan x = t2
$$ \Rightarrow $$$$\,\,\,$$ sec2xdx = 2t dt
as sec2x = 1 + tan2x = 1 + t4
= $$\int {{{{{\sec }^4}x\,dx} \over {2\sqrt {\tan x} }}} $$
= $$\int {{{{{\sec }^2}x\left( {{{\sec }^2}x\,dx} \right)} \over {2\sqrt {\tan x} }}} $$
= $$\int {{{\left( {1 + {t^4}} \right)2t\,dt} \over {2t}}} $$
= $$\int {\left( {1 + {t^4}} \right)} \,dt$$
= t + $${{{t^5}} \over 5}$$ + k
= $$\sqrt {\tan x} $$ + $${1 \over 5}$$ tan$$^{{5 \over 2}}$$x + k
By comparing with the given equation, we get
A = $${1 \over 2}$$, B = $${5 \over 2}$$, C = $${1 \over 5}$$
$$\therefore\,\,\,$$ A + B + C = $${{16} \over 5}$$
= $$\int {{{dx} \over {{{\cos }^3}x\sqrt {4\sin x\cos x} }}} $$
= $$\int {{{dx} \over {2{{\cos }^4}x\sqrt {\tan x} }}} $$
Let tan x = t2
$$ \Rightarrow $$$$\,\,\,$$ sec2xdx = 2t dt
as sec2x = 1 + tan2x = 1 + t4
= $$\int {{{{{\sec }^4}x\,dx} \over {2\sqrt {\tan x} }}} $$
= $$\int {{{{{\sec }^2}x\left( {{{\sec }^2}x\,dx} \right)} \over {2\sqrt {\tan x} }}} $$
= $$\int {{{\left( {1 + {t^4}} \right)2t\,dt} \over {2t}}} $$
= $$\int {\left( {1 + {t^4}} \right)} \,dt$$
= t + $${{{t^5}} \over 5}$$ + k
= $$\sqrt {\tan x} $$ + $${1 \over 5}$$ tan$$^{{5 \over 2}}$$x + k
By comparing with the given equation, we get
A = $${1 \over 2}$$, B = $${5 \over 2}$$, C = $${1 \over 5}$$
$$\therefore\,\,\,$$ A + B + C = $${{16} \over 5}$$
Comments (0)
