JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 22)
The minimum distance of a point on the curve y = x2−4 from the origin is :
$${{\sqrt {19} } \over 2}$$
$$\sqrt {{{15} \over 2}} $$
$${{\sqrt {15} } \over 2}$$
$$\sqrt {{{19} \over 2}} $$
Explanation
Let point on the curve
y = x2 $$-$$ 4 is ($$\alpha $$2, $$\alpha $$2 $$-$$ 4)
$$ \therefore $$ Distance of the point ($$\alpha $$2, $$\alpha $$2 $$-$$ 4) from origin,
D = $$\sqrt {{\alpha ^2} + {{\left( {{\alpha ^2} - 4} \right)}^2}} $$
$$ \Rightarrow $$ D2 = $$\alpha $$2 + $$\alpha $$4 + 16 $$-$$ 8$$\alpha $$2
$$=$$ $$\alpha $$4 $$-$$ 7$$\alpha $$2 + 16
$$ \therefore $$ $${{d{D^2}} \over {d\alpha }}$$ = 4$$\alpha $$3 $$-$$ 14$$\alpha $$
Now, $${{d{D^2}} \over {d\alpha }}$$ = 0
$$ \Rightarrow $$ 4$$\alpha $$3 $$-$$ 14$$\alpha $$ = 0
$$ \Rightarrow $$ 2$$\alpha $$ (2$$\alpha $$2 $$-$$ 7) = 0
$$\alpha $$ = 0 or $$\alpha $$2 = $${7 \over 2}$$
$${{{d^2}{D^2}} \over {d{\alpha ^2}}} = 12{\alpha ^2} - 14$$
$$ \therefore $$ $${\left( {{{{d^2}{D^2}} \over {d{\alpha ^2}}}} \right)_{at\,\,\alpha = 0}} = - 14 < 0$$
$${\left( {{{{d^2}{D^2}} \over {d{\alpha ^2}}}} \right)_{at\,\,{\alpha ^2} = {7 \over 2}}} = 28 > 0$$
$$\therefore\,\,\,$$ Distance is minimum at $$\alpha $$2 = $${7 \over 2}$$
$$ \therefore $$ Minimum distance
D = $$\sqrt {{{49} \over 4} - {{49} \over 4} + 16} $$
= $${{\sqrt {15} } \over 2}$$
y = x2 $$-$$ 4 is ($$\alpha $$2, $$\alpha $$2 $$-$$ 4)
$$ \therefore $$ Distance of the point ($$\alpha $$2, $$\alpha $$2 $$-$$ 4) from origin,
D = $$\sqrt {{\alpha ^2} + {{\left( {{\alpha ^2} - 4} \right)}^2}} $$
$$ \Rightarrow $$ D2 = $$\alpha $$2 + $$\alpha $$4 + 16 $$-$$ 8$$\alpha $$2
$$=$$ $$\alpha $$4 $$-$$ 7$$\alpha $$2 + 16
$$ \therefore $$ $${{d{D^2}} \over {d\alpha }}$$ = 4$$\alpha $$3 $$-$$ 14$$\alpha $$
Now, $${{d{D^2}} \over {d\alpha }}$$ = 0
$$ \Rightarrow $$ 4$$\alpha $$3 $$-$$ 14$$\alpha $$ = 0
$$ \Rightarrow $$ 2$$\alpha $$ (2$$\alpha $$2 $$-$$ 7) = 0
$$\alpha $$ = 0 or $$\alpha $$2 = $${7 \over 2}$$
$${{{d^2}{D^2}} \over {d{\alpha ^2}}} = 12{\alpha ^2} - 14$$
$$ \therefore $$ $${\left( {{{{d^2}{D^2}} \over {d{\alpha ^2}}}} \right)_{at\,\,\alpha = 0}} = - 14 < 0$$
$${\left( {{{{d^2}{D^2}} \over {d{\alpha ^2}}}} \right)_{at\,\,{\alpha ^2} = {7 \over 2}}} = 28 > 0$$
$$\therefore\,\,\,$$ Distance is minimum at $$\alpha $$2 = $${7 \over 2}$$
$$ \therefore $$ Minimum distance
D = $$\sqrt {{{49} \over 4} - {{49} \over 4} + 16} $$
= $${{\sqrt {15} } \over 2}$$
Comments (0)
