JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 2)
Let x, y, z be positive real numbers such that x + y + z = 12 and x3y4z5 = (0.1) (600)3. Then x3 + y3 + z3is equal to :
270
258
342
216
Explanation
As we know
AM $$ \ge $$ GM
$$ \Rightarrow $$ $${{3\left( {{x \over 3}} \right) + 4\left( {{y \over 4}} \right) + 5\left( {{z \over 5}} \right)} \over {12}}$$ $$ \ge $$ $${\left[ {{{\left( {{x \over 3}} \right)}^3}{{\left( {{y \over 4}} \right)}^4}{{\left( {{z \over 5}} \right)}^5}} \right]^{{1 \over {12}}}}$$
$$ \Rightarrow $$ 1 $$ \ge $$ $${{{x^3}{y^4}{z^5}} \over {{3^3}{4^4}{5^5}}}$$
$$ \Rightarrow $$ x3 y4 z5 $$ \le $$ 33 . 44 . 55
$$ \Rightarrow $$ x3 y4 z5 $$ \le $$ (0.1)(600)3
but given that,
x3 y4 z5 = (0.1) (600)3
$$ \therefore $$ AM $$=$$ GM
$$ \Rightarrow $$ All the number are equal.
$$ \therefore $$ $${x \over 3} = {y \over 4} = {z \over 5} = k$$
$$ \Rightarrow $$ x $$=$$ 3k, y = 4k, z = 5k
given that,
x + y + z $$=$$ 12
$$ \Rightarrow $$ 3k + 4k + 5k $$=$$ 12
$$ \Rightarrow $$ 12k $$=$$ 12
$$ \Rightarrow $$ k = 1
$$ \therefore $$ x $$=$$ 3, y $$=$$ 4, z $$=$$ 5
So, x3 + y3 + z3
$$=$$ 33 + 43 + 53
$$=$$ 216
AM $$ \ge $$ GM
$$ \Rightarrow $$ $${{3\left( {{x \over 3}} \right) + 4\left( {{y \over 4}} \right) + 5\left( {{z \over 5}} \right)} \over {12}}$$ $$ \ge $$ $${\left[ {{{\left( {{x \over 3}} \right)}^3}{{\left( {{y \over 4}} \right)}^4}{{\left( {{z \over 5}} \right)}^5}} \right]^{{1 \over {12}}}}$$
$$ \Rightarrow $$ 1 $$ \ge $$ $${{{x^3}{y^4}{z^5}} \over {{3^3}{4^4}{5^5}}}$$
$$ \Rightarrow $$ x3 y4 z5 $$ \le $$ 33 . 44 . 55
$$ \Rightarrow $$ x3 y4 z5 $$ \le $$ (0.1)(600)3
but given that,
x3 y4 z5 = (0.1) (600)3
$$ \therefore $$ AM $$=$$ GM
$$ \Rightarrow $$ All the number are equal.
$$ \therefore $$ $${x \over 3} = {y \over 4} = {z \over 5} = k$$
$$ \Rightarrow $$ x $$=$$ 3k, y = 4k, z = 5k
given that,
x + y + z $$=$$ 12
$$ \Rightarrow $$ 3k + 4k + 5k $$=$$ 12
$$ \Rightarrow $$ 12k $$=$$ 12
$$ \Rightarrow $$ k = 1
$$ \therefore $$ x $$=$$ 3, y $$=$$ 4, z $$=$$ 5
So, x3 + y3 + z3
$$=$$ 33 + 43 + 53
$$=$$ 216
Comments (0)
