JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 18)

The area (in sq. units) of the region described by

A= {(x, y) $$\left| {} \right.$$y$$ \ge $$ x2 $$-$$ 5x + 4, x + y $$ \ge $$ 1, y $$ \le $$ 0} is :
$${7 \over 2}$$
$${{19} \over 6}$$
$${{13} \over 6}$$
$${{17} \over 6}$$

Explanation

JEE Main 2016 (Online) 9th April Morning Slot Mathematics - Area Under The Curves Question 122 English Explanation

Required Area

= A1 + A2

= $$\left| {\int\limits_1^3 {\left( {1 - x} \right)} dx} \right| + \left| {\int\limits_3^4 {\left( {{x^2} - 5x + 4} \right)dx} } \right|$$

= $$\left| {\left[ {x - {{{x^2}} \over 2}} \right]_1^3} \right| + \left| {\left[ {{{{x^3}} \over 3} - {5 \over 2}{x^2} + 4x} \right]_3^4} \right|$$

= $$\left| {\left[ {\left( {3 - {9 \over 2}} \right) - \left( {1 - {1 \over 2}} \right)} \right]} \right| + \left| {\left[ {\left( {{{64} \over 3} - 40 + 16} \right) - \left( {9 - {{45} \over 2} + 12} \right)} \right]} \right|$$

= $$\left| {\left( {2 - 4} \right)} \right| + \left| {\left( {{{ - 8} \over 3} + {3 \over 2}} \right)} \right|$$

= 2 + $${7 \over 6}$$

= $${{19} \over 6}$$ sq. unit.

Comments (0)

Advertisement