JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 13)

In a triangle ABC, right angled at the vertex A, if the position vectors of A, B and C are respectively 3$$\widehat i$$ + $$\widehat j$$ $$-$$ $$\widehat k$$,   $$-$$$$\widehat i$$ + 3$$\widehat j$$ + p$$\widehat k$$ and 5$$\widehat i$$ + q$$\widehat j$$ $$-$$ 4$$\widehat k$$, then the point (p, q) lies on a line :
parallel to x-axis.
parallel to y-axis.
making an acute angle with the positive direction of x-axis.
making an obtuse angle with the positive direction of x-axis.

Explanation

Given,

$$\overrightarrow A = 3\widehat i + \widehat j - \widehat k$$

$$\overrightarrow B = - \widehat i + 3\widehat j - p\widehat k$$

$$\overrightarrow C = 5\widehat i + 9\widehat j - 4\widehat k$$

$$ \therefore $$   $$\overrightarrow {AB} = - 4\widehat i + 2\widehat j + \left( {p + 1} \right)\widehat k$$

      $$\overrightarrow {AC} = 2\widehat i + \left( {q - 1} \right)\widehat j - 3\widehat k$$

JEE Main 2016 (Online) 9th April Morning Slot Mathematics - Vector Algebra Question 198 English Explanation

$$\Delta $$ABC is a right angle triangle.

Here $$\overrightarrow {AB} $$ perpendicular to $$\overrightarrow {AC} $$

$$ \therefore $$   $$\overrightarrow {AB} $$  .  $$\overrightarrow {AC} $$  =  0

$$ \Rightarrow $$   $$-$$ 8 + 2(q $$-$$ 1) $$-$$ 3(p + 1) = 0

$$ \Rightarrow $$   3p $$-$$ 2q + 13 = 0

$$ \therefore $$   (p, q) lies on the line

3x $$-$$ 2y + 13 = 0

And slope of the line = $${3 \over 2}$$

$$ \therefore $$   line makes an angle less than 90o or acute angle with the positive direction of x-axis.

Comments (0)

Advertisement