JEE MAIN - Mathematics (2016 - 9th April Morning Slot - No. 11)
If m and M are the minimum and the maximum values of
4 + $${1 \over 2}$$ sin2 2x $$-$$ 2cos4 x, x $$ \in $$ R, then M $$-$$ m is equal to :
4 + $${1 \over 2}$$ sin2 2x $$-$$ 2cos4 x, x $$ \in $$ R, then M $$-$$ m is equal to :
$${{15} \over 4}$$
$${{9} \over 4}$$
$${{7} \over 4}$$
$${{1} \over 4}$$
Explanation
Given,
4 + $${1 \over 2}$$ sin2 2x $$-$$ 2cos4 x
= 4 + $${1 \over 2}$$ (2sinx cosx)2 $$-$$ 2cos4x
= 4 + $${1 \over 2}$$ $$ \times $$ 4 sin2x cos2x $$-$$ 2cos4 x
= 4 + 2 (1 $$-$$ cos2x) cos2x $$-$$ 2cos4 x
= 4 + 2 cos2x $$-$$ 4cos4x
= $$-$$ 4 $$\left\{ {\cos } \right.$$4x $$-$$ $$\left. {{{{{\cos }^2}x} \over 2} - 1} \right\}$$
= $$-$$ 4 $$\left\{ {\cos } \right.$$4x $$-$$ 2 . $${1 \over 4}$$ . cos2x + $$\left. {{1 \over {16}} - {1 \over {16}} - 1} \right\}$$
= $$-$$ 4 $$\left\{ {{{\left( {{{\cos }^2}x - {1 \over 4}} \right)}^2} - {{17} \over {16}}} \right\}$$
We know,
O $$ \le $$ cos2x $$ \le $$ 1
$$ \Rightarrow $$ $$ - {1 \over 4}$$ $$ \le $$cos2x $$ - {1 \over 4}$$ $$ \le $$ $${3 \over 4}$$
$$ \Rightarrow $$ O $$ \le $$ $${\left( {{{\cos }^2}x - {1 \over 4}} \right)^2}$$ $$ \le $$ $${9 \over {16}}$$
$$ \Rightarrow $$ $$-$$ $${17 \over {16}}$$ $$ \le $$ $${\left( {{{\cos }^2}x - {1 \over 4}} \right)^2}$$ $$-$$ $${{17} \over {16}}$$ $$ \le $$ $${9 \over {16}}$$ $$-$$ $${{17} \over {16}}$$
$$ \Rightarrow $$ $$-$$ $${{17} \over {16}}$$ $$ \le $$ $${\left( {{{\cos }^2}x - {1 \over 4}} \right)^2}$$ $$-$$ $${{17} \over {16}}$$ $$ \le $$ $$-$$ $${{1} \over {2}}$$
$$ \Rightarrow $$ $${{17} \over {4}}$$ $$ \ge $$ $$-$$ 4 $$\left\{ {{{\left( {{{\cos }^2}x - {1 \over 4}} \right)}^2} - {{17} \over {16}}} \right\} \ge 2$$
$$ \therefore $$ Maximum value, M = $${{17} \over 4}$$
Minimum value, m = $$2$$
$$ \therefore $$ M $$-$$ m = $${{17} \over 4}$$ $$-$$ $$2$$ = $${{9} \over 4}$$
4 + $${1 \over 2}$$ sin2 2x $$-$$ 2cos4 x
= 4 + $${1 \over 2}$$ (2sinx cosx)2 $$-$$ 2cos4x
= 4 + $${1 \over 2}$$ $$ \times $$ 4 sin2x cos2x $$-$$ 2cos4 x
= 4 + 2 (1 $$-$$ cos2x) cos2x $$-$$ 2cos4 x
= 4 + 2 cos2x $$-$$ 4cos4x
= $$-$$ 4 $$\left\{ {\cos } \right.$$4x $$-$$ $$\left. {{{{{\cos }^2}x} \over 2} - 1} \right\}$$
= $$-$$ 4 $$\left\{ {\cos } \right.$$4x $$-$$ 2 . $${1 \over 4}$$ . cos2x + $$\left. {{1 \over {16}} - {1 \over {16}} - 1} \right\}$$
= $$-$$ 4 $$\left\{ {{{\left( {{{\cos }^2}x - {1 \over 4}} \right)}^2} - {{17} \over {16}}} \right\}$$
We know,
O $$ \le $$ cos2x $$ \le $$ 1
$$ \Rightarrow $$ $$ - {1 \over 4}$$ $$ \le $$cos2x $$ - {1 \over 4}$$ $$ \le $$ $${3 \over 4}$$
$$ \Rightarrow $$ O $$ \le $$ $${\left( {{{\cos }^2}x - {1 \over 4}} \right)^2}$$ $$ \le $$ $${9 \over {16}}$$
$$ \Rightarrow $$ $$-$$ $${17 \over {16}}$$ $$ \le $$ $${\left( {{{\cos }^2}x - {1 \over 4}} \right)^2}$$ $$-$$ $${{17} \over {16}}$$ $$ \le $$ $${9 \over {16}}$$ $$-$$ $${{17} \over {16}}$$
$$ \Rightarrow $$ $$-$$ $${{17} \over {16}}$$ $$ \le $$ $${\left( {{{\cos }^2}x - {1 \over 4}} \right)^2}$$ $$-$$ $${{17} \over {16}}$$ $$ \le $$ $$-$$ $${{1} \over {2}}$$
$$ \Rightarrow $$ $${{17} \over {4}}$$ $$ \ge $$ $$-$$ 4 $$\left\{ {{{\left( {{{\cos }^2}x - {1 \over 4}} \right)}^2} - {{17} \over {16}}} \right\} \ge 2$$
$$ \therefore $$ Maximum value, M = $${{17} \over 4}$$
Minimum value, m = $$2$$
$$ \therefore $$ M $$-$$ m = $${{17} \over 4}$$ $$-$$ $$2$$ = $${{9} \over 4}$$
Comments (0)
