JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 5)

Let A be a 3 $$ \times $$ 3 matrix such that A2 $$-$$ 5A + 7I = 0

Statement - I :  

A$$-$$1 = $${1 \over 7}$$ (5I $$-$$ A).

Statement - II :

The polynomial A3 $$-$$ 2A2 $$-$$ 3A + I can be reduced to 5(A $$-$$ 4I).

Then :
Statement-I is true, but Statement-II is false.
Statement-I is false, but Statement-II is true.
Both the statements are true.
Both the statements are false

Explanation

Given,

A2 $$-$$ 5A + 7I = 0

$$ \Rightarrow $$   A2 $$-$$ 5A = $$-$$ 7I

$$ \Rightarrow $$   AAA$$-$$1 $$-$$ 5AA$$-$$1 = $$-$$ 7IA$$-$$1

$$ \Rightarrow $$   AI $$-$$ 5I = $$-$$ 7A$$-$$1

$$ \Rightarrow $$   A $$-$$ 5I = $$-$$ 7A$$-$$1

$$ \Rightarrow $$   A$$-$$1 = $${1 \over 7}$$(5I $$-$$ A)

Hence, statement 1 is true.

Now A3 $$-$$ 2A2 $$-$$ 3A + I

=   A(A2) $$-$$ 2A2 $$-$$ 3A + I

=   A(5A $$-$$ 7I) $$-$$ 2A2 $$-$$ 3A + I

=   5A2 $$-$$ 7A $$-$$ 2A2 $$-$$ 3A + I

=   3A2 $$-$$ 10A + I

=   3(5A $$-$$ 7I) $$-$$ 10A + I

=   15A $$-$$ 21A $$-$$ 10A + I

=   5A $$-$$ 20I

=   5(A $$-$$ 4I)

So, statement 2 is also correct.

Comments (0)

Advertisement