JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 4)

If    A = $$\left[ {\matrix{ { - 4} & { - 1} \cr 3 & 1 \cr } } \right]$$,

then the determinant of the matrix (A2016 − 2A2015 − A2014) is :
2014
$$-$$ 175
2016
$$-$$ 25

Explanation

Given,

$$A = \left[ {\matrix{ { - 4} & { - 1} \cr 3 & 1 \cr } } \right]$$

$${A^2} = \left[ {\matrix{ { - 4} & { - 1} \cr 3 & 1 \cr } } \right]\left[ {\matrix{ { - 4} & { - 1} \cr 3 & 1 \cr } } \right]$$

$$ = \left[ {\matrix{ {13} & 3 \cr { - 9} & { - 2} \cr } } \right]$$

A2 $$-$$ 2A $$-$$ I

$$ = \left[ {\matrix{ {13} & 3 \cr { - 9} & { - 2} \cr } } \right] - \left[ {\matrix{ { - 8} & { - 2} \cr 6 & 2 \cr } } \right] - \left[ {\matrix{ 1 & 0 \cr 0 & 1 \cr } } \right]$$

$$ = \left[ {\matrix{ {20} & 5 \cr { - 15} & { - 5} \cr } } \right]$$

$$\left| A \right| = \left| {\matrix{ { - 4} & { - 1} \cr 3 & 1 \cr } } \right|$$ $$=$$ $$-$$ 4 + 3 $$=$$ $$-$$ 1

Now,

$$\left| {{A^{2016}} - 2{A^{2015}} - {A^{2014}}} \right|$$

$$=$$ $${\left| A \right|^{2014}}\left| {{A^2} - 2A - {\rm I}} \right|$$

$$ = {\left( { - 1} \right)^{2014}}\left| {\matrix{ {20} & 5 \cr { - 15} & { - 5} \cr } } \right|$$

$$=$$ 1 $$ \times $$ ($$-$$ 100 + 75)

$$=$$ $$-$$ 25

Comments (0)

Advertisement