JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 3)

If the coefficients of x−2 and x−4 in the expansion of $${\left( {{x^{{1 \over 3}}} + {1 \over {2{x^{{1 \over 3}}}}}} \right)^{18}},\left( {x > 0} \right),$$ are m and n respectively, then $${m \over n}$$ is equal to :
182
$${4 \over 5}$$
$${5 \over 4}$$
27

Explanation

Tr+1  =  18Cr  $${\left( {{x^{{1 \over 3}}}} \right)^{18 - r}}$$  .  $${\left( {{1 \over {2{x^{{1 \over 3}}}}}} \right)^r}$$

=  18Cr  $${\left( {{1 \over 2}} \right)^r}\,\,.\,\,{x^{{{18 - 2r} \over 3}}}$$

For coefficient of x$$-$$2,

$${{18 - 2r} \over 3}$$   =   $$-$$2

$$ \Rightarrow $$   r  =  12

$$ \therefore $$   Coefficient of   x$$-$$2     is  (m) = 18C12  $${\left( {{1 \over 2}} \right)^{12}}$$

For coefficient of x$$-$$4,

$${{18 - 2r} \over 3}$$ = $$-$$ 4

$$ \Rightarrow $$   r = 15

$$ \therefore $$   Coefficient of x$$-$$4 is (n) = 18C15 $$\left( {{1 \over {2}}} \right)$$15

$$ \therefore $$   $${m \over n} = {{^{18}{C_{12}}{{\left( {{1 \over 2}} \right)}^{12}}} \over {^{18}{C_{15}}{{\left( {{1 \over 2}} \right)}^{15}}}}$$

= $${{{}^{18}{C_6} \times {{\left( 2 \right)}^3}} \over {{}^{18}{C_3}}}$$

= 182

Comments (0)

Advertisement