JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 22)
$$\mathop {\lim }\limits_{x \to 0} \,{{{{\left( {1 - \cos 2x} \right)}^2}} \over {2x\,\tan x\, - x\tan 2x}}$$ is :
$$-$$ 2
$$-$$ $${1 \over 2}$$
$${1 \over 2}$$
2
Explanation
$$\mathop {\lim }\limits_{x \to 0} {{{{\left( {1 - \cos 2x} \right)}^2}} \over {2x\tan x - x\tan 2x}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{{{\left( {2{{\sin }^2}x} \right)}^2}} \over {2x\left( {x + {{{x^3}} \over 3} + {{2{x^5}} \over {15}} + ....} \right) - x\left( {2x + {{{2^3}{x^3}} \over 3} + 2.{{{2^5}{x^5}} \over {15}}+...} \right)}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{4{{\left( {x - {{{x^3}} \over {3!}} + {{{x^5}} \over {5!}} - ....} \right)}^4}} \over {{x^4}\left( {{2 \over 3} - {8 \over 3}} \right) + {x^6}\left( {{4 \over {15}} - {{64} \over {15}}} \right) + ....}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{4{{\left( {1 - {{{x^2}} \over {3!}} + {{{3^4}} \over {5!}} - ....} \right)}^4}} \over { - 2 + {x^2}\left( { - {{60} \over {15}}} \right) + ....}}$$
(By dividing numerator and denominator by x4)
$$ = {{4{{\left( {1 - 0} \right)}^4}} \over { - 2 + 0}}$$
$$ = {4 \over { - 2}}$$
$$=$$ $$-$$ 2
$$ = \mathop {\lim }\limits_{x \to 0} {{{{\left( {2{{\sin }^2}x} \right)}^2}} \over {2x\left( {x + {{{x^3}} \over 3} + {{2{x^5}} \over {15}} + ....} \right) - x\left( {2x + {{{2^3}{x^3}} \over 3} + 2.{{{2^5}{x^5}} \over {15}}+...} \right)}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{4{{\left( {x - {{{x^3}} \over {3!}} + {{{x^5}} \over {5!}} - ....} \right)}^4}} \over {{x^4}\left( {{2 \over 3} - {8 \over 3}} \right) + {x^6}\left( {{4 \over {15}} - {{64} \over {15}}} \right) + ....}}$$
$$ = \mathop {\lim }\limits_{x \to 0} {{4{{\left( {1 - {{{x^2}} \over {3!}} + {{{3^4}} \over {5!}} - ....} \right)}^4}} \over { - 2 + {x^2}\left( { - {{60} \over {15}}} \right) + ....}}$$
(By dividing numerator and denominator by x4)
$$ = {{4{{\left( {1 - 0} \right)}^4}} \over { - 2 + 0}}$$
$$ = {4 \over { - 2}}$$
$$=$$ $$-$$ 2
Comments (0)
