JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 20)

Let f(x) = sin4x + cos4 x. Then f is an increasing function in the interval :
$$] 0, \frac{\pi}{4}[$$
$$] \frac{\pi}{4}, \frac{\pi}{2}[$$
$$] \frac{\pi}{2}, \frac{5 \pi}{8}[$$
$$] \frac{5 \pi}{8}, \frac{3 \pi}{4}[$$

Explanation

f(x) = sin4x + cos4x

$$ \therefore $$   f'(x) = 4sin3x cosx + 4cos3x ($$-$$ sinx)

= 4sinx cosx (sin2x $$-$$ cos2x)

= $$-$$ 2sin2x cos2x

= $$-$$ sin4x

As, f(x) is increasing function when f'(x) > 0

$$ \Rightarrow $$    $$-$$ sin4x > 0

$$ \Rightarrow $$   sin4x < 0

$$ \therefore $$   $$\pi $$ < 4x < 2$$\pi $$

$${\pi \over 4} < x < {\pi \over 2}$$

$$ \therefore $$   x $$ \in $$ $$\left( {{\pi \over 4},{\pi \over 2}} \right)$$

Comments (0)

Advertisement