JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 2)

If    $${{{}^{n + 2}C{}_6} \over {{}^{n - 2}{P_2}}}$$ = 11, then n satisfies the equation :
n2 + 3n − 108 = 0
n2 + 5n − 84 = 0
n2 + 2n − 80 = 0
n2 + n − 110 = 0

Explanation

$${{{}^{n + 2}{C_6}} \over {{}^{n - 2}{P_2}}} = 11$$

$$ \Rightarrow $$   $${{\left( {n + 2} \right)!} \over {6!\,\left( {n - 4} \right)!}} = 11\,.\,{{\left( {n - 2} \right)!} \over {\left( {n - 4} \right)!}}$$

$$ \Rightarrow $$   (n + 2)!  =  11.6! (n $$-$$ 2)!

$$ \Rightarrow $$   (n + 2) (n + 1) n (n $$-$$ 1)   =   11.6!

$$ \Rightarrow $$   (n + 2) (n + 1) n (n $$-$$ 1) = 11 . 6 . 5 . 4 . 3 . 2 . 1

$$ \Rightarrow $$   (n + 2) (n + 1) n (n $$-$$ 1)   =  11 . 10 . 9 . 8

$$ \therefore $$   n = 9

This value of n satisfy the equation,

n2 + 3n $$-$$ 108 = 0

Comments (0)

Advertisement