JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 16)

A straight line through origin O meets the lines 3y = 10 − 4x and 8x + 6y + 5 = 0 at points A and B respectively. Then O divides the segment AB in the ratio :
2 : 3
1 : 2
4 : 1
3 : 4

Explanation

The lines 4x + 3y $$-$$ 10 = 0 and

8x + 6y + 5 = 0 , are parallel as

    $${4 \over 8}$$  =  $${3 \over 6}$$

Now length of perpendicular from

(0, 0, 0) to 4x + 3y $$-$$ 10 = 0 is,

P1   =   $$\left| {{{4\left( 0 \right) + 3\left( 0 \right) - 10} \over {\sqrt {{4^2} + {3^2}} }}} \right|$$  =  $${{10} \over 5}$$  =  2

Length of perpendicular from

0 (0, 0) to 8x + 6y + 5 = 0 is

P2   =  $$\left| {{{8\left( 0 \right) + 6\left( 0 \right) + 5} \over {\sqrt {{6^2} + {8^2}} }}} \right|$$   =  $${5 \over {10}}$$   =  $${1 \over 2}$$

$$\therefore\,\,\,$$ P1 : P2   =   2 : $${1 \over 2}$$   =   4 : 1

Comments (0)

Advertisement