JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 14)
The solution of the differential equation
$${{dy} \over {dx}}\, + \,{y \over 2}\,\sec x = {{\tan x} \over {2y}},\,\,$$
where 0 $$ \le $$ x < $${\pi \over 2}$$, and y (0) = 1, is given by :
$${{dy} \over {dx}}\, + \,{y \over 2}\,\sec x = {{\tan x} \over {2y}},\,\,$$
where 0 $$ \le $$ x < $${\pi \over 2}$$, and y (0) = 1, is given by :
y = 1 $$-$$ $${x \over {\sec x + \tan x}}$$
y2 = 1 + $${x \over {\sec x + \tan x}}$$
y2 = 1 $$-$$ $${x \over {\sec x + \tan x}}$$
y = 1 + $${x \over {\sec x + \tan x}}$$
Explanation
Given,
$${{dy} \over {dx}} + {y \over 2}\sec x = {{\tan x} \over {2y}}$$
$$ \Rightarrow $$ $$2y{{dy} \over {dx}} + {y^2}\sec x = \tan x$$
Now, let
y2 $$=$$ t
$$ \Rightarrow $$ 2y$${{dy} \over {dx}} = {{dt} \over {dx}}$$
$$ \therefore $$ New equation,
$${{dt} \over {dx}} + t\sec x = \tan x$$
$$ \therefore $$ I.F $$=$$ $${e^{\int {\sec xdx} }}$$
$$=$$ $${e^{\ln \left( {\sec x + \tan x} \right)}}$$
$$=$$ sec x + tan x
$$ \therefore $$ Solution is,
t(sec x + tan x) $$=$$ $$\int {\tan x} $$ (sec x + tan x) dx
$$ \Rightarrow $$ t(sec x + tan x) $$=$$ sec x + tan x $$-$$ x + c
$$ \Rightarrow $$ t $$=$$ 1 $$-$$ $${x \over {\sec x + \tan x}} + c$$
$$ \Rightarrow $$ y2 $$=$$ 1 $$-$$ $${x \over {\sec x + \tan x}} + c$$
Given,
y(0) $$=$$ 1
$$ \therefore $$ 1 $$=$$ 1 $$-$$ 0 + c
$$ \Rightarrow $$ c $$=$$ 0
$$ \therefore $$ y2 $$=$$ 1 $$-$$ $${x \over {\sec x + \tan x}}$$
$${{dy} \over {dx}} + {y \over 2}\sec x = {{\tan x} \over {2y}}$$
$$ \Rightarrow $$ $$2y{{dy} \over {dx}} + {y^2}\sec x = \tan x$$
Now, let
y2 $$=$$ t
$$ \Rightarrow $$ 2y$${{dy} \over {dx}} = {{dt} \over {dx}}$$
$$ \therefore $$ New equation,
$${{dt} \over {dx}} + t\sec x = \tan x$$
$$ \therefore $$ I.F $$=$$ $${e^{\int {\sec xdx} }}$$
$$=$$ $${e^{\ln \left( {\sec x + \tan x} \right)}}$$
$$=$$ sec x + tan x
$$ \therefore $$ Solution is,
t(sec x + tan x) $$=$$ $$\int {\tan x} $$ (sec x + tan x) dx
$$ \Rightarrow $$ t(sec x + tan x) $$=$$ sec x + tan x $$-$$ x + c
$$ \Rightarrow $$ t $$=$$ 1 $$-$$ $${x \over {\sec x + \tan x}} + c$$
$$ \Rightarrow $$ y2 $$=$$ 1 $$-$$ $${x \over {\sec x + \tan x}} + c$$
Given,
y(0) $$=$$ 1
$$ \therefore $$ 1 $$=$$ 1 $$-$$ 0 + c
$$ \Rightarrow $$ c $$=$$ 0
$$ \therefore $$ y2 $$=$$ 1 $$-$$ $${x \over {\sec x + \tan x}}$$
Comments (0)
