JEE MAIN - Mathematics (2016 - 10th April Morning Slot - No. 10)
If A > 0, B > 0 and A + B = $${\pi \over 6}$$,
then the minimum value of tanA + tanB is :
then the minimum value of tanA + tanB is :
$$\sqrt 3 - \sqrt 2 $$
$$2 - \sqrt 3 $$
$$4 - 2\sqrt 3 $$
$${2 \over {\sqrt 3 }}$$
Explanation
Given,
A + B = $${\pi \over 6}$$
$$ \therefore $$ tan(A + B) = tan$$\left( {{\pi \over 6}} \right)$$ = $${1 \over {\sqrt 3 }}$$
We know,
tan(A + B) = $${{\tan A + \tan B} \over {1 - \tan A\tan B}}$$
$$ \Rightarrow $$ $${1 \over {\sqrt 3 }}$$ = $${y \over {1 - \tan A\tan B}}$$
where y = tan A + tan B
$$ \Rightarrow $$ tanA tanB = 1 $$-$$ $$\sqrt 3 $$ y
Also AM $$ \ge $$ GM
$$ \Rightarrow $$ $${{\tan A + \tan B} \over 2} \ge \sqrt {\tan A\tan B} $$
$$ \Rightarrow $$ y $$ \ge $$ 2$$\sqrt {1 - \sqrt 3 y} $$
$$ \Rightarrow $$ y2 $$ \ge $$ 4 $$-$$ 4$${\sqrt 3 y}$$
$$ \Rightarrow $$ y2 + 4$${\sqrt 3 y}$$ $$-$$ 4 $$ \ge $$ 0
$$ \Rightarrow $$ y $$ \le $$ $$-$$ 2$$\sqrt 3 $$ $$-$$ 4
or y $$ \ge $$ $$-$$ 2$$\sqrt 3 $$ + 4
(y $$ \le $$ $$-$$ 2$$\sqrt 3 $$ $$-$$ 4 is not possible as tan B > 0)
A + B = $${\pi \over 6}$$
$$ \therefore $$ tan(A + B) = tan$$\left( {{\pi \over 6}} \right)$$ = $${1 \over {\sqrt 3 }}$$
We know,
tan(A + B) = $${{\tan A + \tan B} \over {1 - \tan A\tan B}}$$
$$ \Rightarrow $$ $${1 \over {\sqrt 3 }}$$ = $${y \over {1 - \tan A\tan B}}$$
where y = tan A + tan B
$$ \Rightarrow $$ tanA tanB = 1 $$-$$ $$\sqrt 3 $$ y
Also AM $$ \ge $$ GM
$$ \Rightarrow $$ $${{\tan A + \tan B} \over 2} \ge \sqrt {\tan A\tan B} $$
$$ \Rightarrow $$ y $$ \ge $$ 2$$\sqrt {1 - \sqrt 3 y} $$
$$ \Rightarrow $$ y2 $$ \ge $$ 4 $$-$$ 4$${\sqrt 3 y}$$
$$ \Rightarrow $$ y2 + 4$${\sqrt 3 y}$$ $$-$$ 4 $$ \ge $$ 0
$$ \Rightarrow $$ y $$ \le $$ $$-$$ 2$$\sqrt 3 $$ $$-$$ 4
or y $$ \ge $$ $$-$$ 2$$\sqrt 3 $$ + 4
(y $$ \le $$ $$-$$ 2$$\sqrt 3 $$ $$-$$ 4 is not possible as tan B > 0)
Comments (0)
