JEE MAIN - Mathematics (2015 (Offline) - No. 8)
The integral
$$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx} $$ is equal to :
$$\int\limits_2^4 {{{\log \,{x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}dx} $$ is equal to :
$$1$$
$$6$$
$$2$$
$$4$$
Explanation
$$I = \int\limits_2^4 {{{\log {x^2}} \over {\log {x^2} + \log \left( {36 - 12x + {x^2}} \right)}}} $$
$$I = \int\limits_2^4 {{{\log {x^2}} \over {\log {x^2} + \log {{\left( {6 - x} \right)}^2}}}} \,\,\,\,\,\,\,\,\,\,...\left( i \right)$$
$$I = \int\limits_2^4 {{{\log {{\left( {6 - x} \right)}^2}} \over {\log {{\left( {6 - x} \right)}^2} + \log {x^2}}}} \,\,\,\,\,\,\,\,...\left( {ii} \right)$$
Adding $$(1)$$ and $$(2)$$
$$2I = \int\limits_2^4 {dx = \left[ x \right]_2^4} = 2 \Rightarrow 1 - 1$$
$$I = \int\limits_2^4 {{{\log {x^2}} \over {\log {x^2} + \log {{\left( {6 - x} \right)}^2}}}} \,\,\,\,\,\,\,\,\,\,...\left( i \right)$$
$$I = \int\limits_2^4 {{{\log {{\left( {6 - x} \right)}^2}} \over {\log {{\left( {6 - x} \right)}^2} + \log {x^2}}}} \,\,\,\,\,\,\,\,...\left( {ii} \right)$$
Adding $$(1)$$ and $$(2)$$
$$2I = \int\limits_2^4 {dx = \left[ x \right]_2^4} = 2 \Rightarrow 1 - 1$$
Comments (0)
