JEE MAIN - Mathematics (2015 (Offline) - No. 6)

Let $$y(x)$$ be the solution of the differential equation

$$\left( {x\,\log x} \right){{dy} \over {dx}} + y = 2x\,\log x,\left( {x \ge 1} \right).$$ Then $$y(e)$$ is equal to :
$$2$$
$$2e$$
$$e$$
$$0$$

Explanation

Given, $${{dy} \over {dx}} + \left( {{1 \over {x\,\log \,x}}} \right)y = 2$$

$$I.F. = {e^{\int {{1 \over {x\log x}}dx} }} = {e^{\log \left( {\log x} \right)}} = \log x$$

$$y.\log x = \int {2\,\log xdx + c} $$

$$y\log x = 2\left[ {x\log x - x} \right] + c$$

Put $$x=1,y.0=-2+c$$ $$ \Rightarrow c = 2$$

Put $$x=e$$

$$y\log e = 2e\left( {\log e - 1} \right) + c \Rightarrow y\left( e \right) = c = 2$$

Comments (0)

Advertisement