JEE MAIN - Mathematics (2015 (Offline) - No. 12)
Let $$f(x)$$ be a polynomial of degree four having extreme values
at $$x=1$$ and $$x=2$$. If $$\mathop {\lim }\limits_{x \to 0} \left[ {1 + {{f\left( x \right)} \over {{x^2}}}} \right] = 3$$, then f$$(2)$$ is equal to :
at $$x=1$$ and $$x=2$$. If $$\mathop {\lim }\limits_{x \to 0} \left[ {1 + {{f\left( x \right)} \over {{x^2}}}} \right] = 3$$, then f$$(2)$$ is equal to :
$$0$$
$$4$$
$$-8$$
$$-4$$
Explanation
$$\mathop {\lim }\limits_{x \to 0} \left[ {1 + {{f\left( x \right)} \over {{x^2}}}} \right] = 3 \Rightarrow \mathop {Lim}\limits_{x \to 0} {{f\left( x \right)} \over {{x^2}}} = 2$$
So, $$f(x)$$ contains terms in $$x{}^2,{x^3}$$ and $${x^4}$$
Let $$f\left( x \right) = {a_1}{x^2} + {a_2}{x^3} + {a_3}{x^4}$$
Since $$\mathop {\lim }\limits_{x \to 0} {{f\left( x \right)} \over {{x^2}}} = 2 \Rightarrow {a_1} = 2$$
Hence, $$f\left( x \right) = 2{x^2} + {a_2}{x^3} + {a_3}{x^4}$$
$$f'\left( x \right) = 4x + 3{a_2}{x^2} + 4{a_3}{x^3}$$
As given: $$f'\left( 1 \right) = 0$$ and $$f'\left( 2 \right) = 0$$
Hence, $$4 + 3{a_2} + 4{a_3} = 0\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$
and $$8 + 12{a_2} + 32{a_3} = 0\,\,\,\,\,...\left( 1 \right)$$
By $$4x\left( {eq1} \right) - eq\left( 2 \right),$$ we get
$$16 + 12{a_2} + 16{a_3} - \left( {8 + 12{a_2} + 32{a_3}} \right) = 0$$
$$ \Rightarrow 8 - 16{a_3} = 0 \Rightarrow {a_3} = 1/2$$
and by eqn. $$\left( 1 \right),4 + 3{a_2} + 4/2 = 0 \Rightarrow {a_2} = - 2$$
$$ \Rightarrow f\left( x \right) = 2{x^2} - 2{x^3} + {1 \over 2}{x^4}$$
$$f\left( 2 \right) = 2 \times 4 - 2 \times 8 + {1 \over 2} \times 16 = 0$$
So, $$f(x)$$ contains terms in $$x{}^2,{x^3}$$ and $${x^4}$$
Let $$f\left( x \right) = {a_1}{x^2} + {a_2}{x^3} + {a_3}{x^4}$$
Since $$\mathop {\lim }\limits_{x \to 0} {{f\left( x \right)} \over {{x^2}}} = 2 \Rightarrow {a_1} = 2$$
Hence, $$f\left( x \right) = 2{x^2} + {a_2}{x^3} + {a_3}{x^4}$$
$$f'\left( x \right) = 4x + 3{a_2}{x^2} + 4{a_3}{x^3}$$
As given: $$f'\left( 1 \right) = 0$$ and $$f'\left( 2 \right) = 0$$
Hence, $$4 + 3{a_2} + 4{a_3} = 0\,\,\,\,\,\,\,\,\,\,...\left( 1 \right)$$
and $$8 + 12{a_2} + 32{a_3} = 0\,\,\,\,\,...\left( 1 \right)$$
By $$4x\left( {eq1} \right) - eq\left( 2 \right),$$ we get
$$16 + 12{a_2} + 16{a_3} - \left( {8 + 12{a_2} + 32{a_3}} \right) = 0$$
$$ \Rightarrow 8 - 16{a_3} = 0 \Rightarrow {a_3} = 1/2$$
and by eqn. $$\left( 1 \right),4 + 3{a_2} + 4/2 = 0 \Rightarrow {a_2} = - 2$$
$$ \Rightarrow f\left( x \right) = 2{x^2} - 2{x^3} + {1 \over 2}{x^4}$$
$$f\left( 2 \right) = 2 \times 4 - 2 \times 8 + {1 \over 2} \times 16 = 0$$
Comments (0)
