JEE MAIN - Mathematics (2015 (Offline) - No. 10)

If $$A = \left[ {\matrix{ 1 & 2 & 2 \cr 2 & 1 & { - 2} \cr a & 2 & b \cr } } \right]$$ is a matrix satisfying the equation

$$A{A^T} = 9\text{I},$$ where $$I$$ is $$3 \times 3$$ identity matrix, then the ordered

pair $$(a, b)$$ is equal to :
$$(2, 1)$$
$$(-2, -1)$$
$$(2, -1)$$
$$(-2, 1)$$

Explanation

$$\left[ {\matrix{ 1 & 2 & 2 \cr 2 & 1 & { - 2} \cr a & 2 & b \cr } } \right]\left[ {\matrix{ 1 & 2 & a \cr 2 & 1 & 2 \cr 2 & { - 2} & b \cr } } \right] = \left[ {\matrix{ 9 & 0 & 0 \cr 0 & 9 & 0 \cr 0 & 0 & 9 \cr } } \right]$$

$$ \Rightarrow \left[ {\matrix{ {1 + 4 + 4} & {2 + 2 - 4} & {a + 4 + 2b} \cr {2 + 2 - 4} & {4 + 1 + 4} & {2a + 2 - 2b} \cr {a + 4 + 2b} & {2a + 2 - 2b} & {{a^2} + 4 + {b^2}} \cr } } \right]$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left[ {\matrix{ 9 & 0 & 0 \cr 0 & 9 & 0 \cr 0 & 0 & 9 \cr } } \right]$$

$$ \Rightarrow a + 4 + 2b = 0$$ $$ \Rightarrow a + 2b = - 4\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)$$

$$2a + 2 - 2b = 0 \Rightarrow 2a - 2b = - 2$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$\,\,\,\,\,\,\,\,\\,$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow a - b = - 1\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,...\left( {ii} \right)$$

On solving $$(i)$$ and $$(ii)$$ we get

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$\,\,\,\,\,\,\,\,$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, - 1 + b + 2b = - 4\,\,\,\,\,\,\,\,\,\,\,\,...\left( i \right)$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$ $$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,$$$$b=-1$$ and $$a=-2$$

$$\left( {a,b} \right) = \left( { - 2, - 1} \right)$$

Comments (0)

Advertisement