JEE MAIN - Mathematics (2014 (Offline) - No. 2)

$$\mathop {\lim }\limits_{x \to 0} {{\sin \left( {\pi {{\cos }^2}x} \right)} \over {{x^2}}}$$ is equal to :
$$ - \pi $$
$$ \pi $$
$${\pi \over 2}$$
1

Explanation

Consider $$\mathop {\lim }\limits_{x \to 0} {{\sin \left( {\pi {{\cos }^2}x} \right)} \over {{x^2}}}$$

$$ = \mathop {\lim }\limits_{x \to 0} {{\sin \left[ {\pi \left( {1 - {{\sin }^2}x} \right)} \right]} \over {{x^2}}}$$

$$ = \mathop {\lim }\limits_{x \to 0} \sin {{\left( {\pi - \pi {{\sin }^2}x} \right)} \over {{x^2}}}$$

$$\left[ \, \right.$$ As $$\sin \left( {\pi - \theta } \right) = \sin \theta $$ $$\left. \, \right]$$

$$ = \mathop {\lim }\limits_{x \to 0} \sin {{\left( {\pi {{\sin }^2}x} \right)} \over {\pi {{\sin }^2}x}} \times {{\pi {{\sin }^2}x} \over {{x^2}}}$$

$$ = \mathop {\lim }\limits_{x \to 0} 1 \times \pi {\left( {{{\sin x} \over x}} \right)^2} = \pi $$

Comments (0)

Advertisement