JEE MAIN - Mathematics (2014 (Offline) - No. 1)
The variance of first 50 even natural numbers is
833
437
$${{437} \over 4}$$
$${{833} \over 4}$$
Explanation
Here is total $$50$$ numbers, so $$N=50$$
Variance $$ = $$ $${{\sum {{x^2}} } \over {50}} - {\left( {{{\sum x } \over {50}}} \right)^2}$$
Here $$\sum {{x^2}} = $$ sum of square of first $$50$$ even natural number.
$$ = {2^2} + {4^2} + ..... + {100^2}$$
$$ = {2^2}\left[ {{1^2} + {2^2} + ....... + {{50}^2}} \right]$$
$$ = 4\left[ {{{50 \times 51 \times 101} \over 6}} \right]$$
So, $${{\sum {{x^2}} } \over {50}} = {{4 \times 51 \times 101} \over 6} = 3434$$
$$\sum {x = } $$ sum of first $$50$$ even natural numbers
$$ = 2 + 4 + ...... + 100$$
$$ = 2\left[ {1 + 2 + .... + 50} \right]$$
$$ = 2\left[ {{{50 \times 51} \over 2}} \right]$$
$$ = 50 \times 51$$
$$\therefore\,\,\,$$ $${\left( {{{\sum x } \over {50}}} \right)^2} = {\left( {{{50 \times 51} \over {50}}} \right)^2} = 2601$$
$$\therefore\,\,\,$$ Variance $$ = 3434 - 2601$$ $$=833$$
Variance $$ = $$ $${{\sum {{x^2}} } \over {50}} - {\left( {{{\sum x } \over {50}}} \right)^2}$$
Here $$\sum {{x^2}} = $$ sum of square of first $$50$$ even natural number.
$$ = {2^2} + {4^2} + ..... + {100^2}$$
$$ = {2^2}\left[ {{1^2} + {2^2} + ....... + {{50}^2}} \right]$$
$$ = 4\left[ {{{50 \times 51 \times 101} \over 6}} \right]$$
So, $${{\sum {{x^2}} } \over {50}} = {{4 \times 51 \times 101} \over 6} = 3434$$
$$\sum {x = } $$ sum of first $$50$$ even natural numbers
$$ = 2 + 4 + ...... + 100$$
$$ = 2\left[ {1 + 2 + .... + 50} \right]$$
$$ = 2\left[ {{{50 \times 51} \over 2}} \right]$$
$$ = 50 \times 51$$
$$\therefore\,\,\,$$ $${\left( {{{\sum x } \over {50}}} \right)^2} = {\left( {{{50 \times 51} \over {50}}} \right)^2} = 2601$$
$$\therefore\,\,\,$$ Variance $$ = 3434 - 2601$$ $$=833$$
Comments (0)
