JEE MAIN - Mathematics (2013 (Offline) - No. 9)

If $$y = \sec \left( {{{\tan }^{ - 1}}x} \right),$$ then $${{{dy} \over {dx}}}$$ at $$x=1$$ is equal to :
$${1 \over {\sqrt 2 }}$$
$${1 \over 2}$$
$$1$$
$$\sqrt 2 $$

Explanation

Let $$y = \sec \left( {{{\tan }^{ - 1}}x} \right)$$

and $${\tan ^{ - 1}}\,\,x = \theta .$$

$$ \Rightarrow x = \tan \theta $$

JEE Main 2013 (Offline) Mathematics - Differentiation Question 70 English Explanation

Thus, we have $$y = \sec \,\theta $$

$$ \Rightarrow y = \sqrt {1 + {x^2}} $$

$$\left( {\,\,} \right.$$ As $$\,\,\,\,\,\,{\sec ^2}\theta = 1 + {\tan ^2}\theta $$ $$\left. {\,\,} \right)$$

$$ \Rightarrow {{dy} \over {dx}} = {1 \over {2\sqrt {1 + {x^2}} }}.2x$$

At $$x = 1,\,\,{{dy} \over {dx}} = {1 \over {\sqrt 2 }}.$$

Comments (0)

Advertisement