JEE MAIN - Mathematics (2013 (Offline) - No. 13)

The term independent of $$x$$ in expansion of
$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$ is
4
120
210
310

Explanation

$${\left( {{{x + 1} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{x - 1} \over {x - {x^{1/2}}}}} \right)^{10}}$$

= $${\left( {{{{{\left( {{x^{1/3}}} \right)}^3} + {{\left( {{1^{1/3}}} \right)}^3}} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{{{\left( {\sqrt x } \right)}^2} - {{\left( 1 \right)}^2}} \over {x - {x^{1/2}}}}} \right)^{10}}$$

= $${\left( {{{\left( {{x^{1/3}} + 1} \right)\left( {{x^{2/3}} - {x^{1/3}} + 1} \right)} \over {{x^{2/3}} - {x^{1/3}} + 1}} - {{\left( {\sqrt x + 1} \right)\left( {\sqrt x - 1} \right)} \over {\sqrt x \left( {\sqrt x - 1} \right)}}} \right)^{10}}$$

= $${\left( {\left( {{x^{1/3}} + 1} \right) - {{\left( {\sqrt x + 1} \right)} \over {\sqrt x }}} \right)^{10}}$$

= $${\left( {\left( {{x^{1/3}} + 1} \right) - \left( {1 + {1 \over {\sqrt x }}} \right)} \right)^{10}}$$

= $${\left( {{x^{1/3}} - {1 \over {{x^{1/2}}}}} \right)^{10}}$$

[Note:

For $${\left( {{x^\alpha } \pm {1 \over {{x^\beta }}}} \right)^n}$$ the $$\left( {r + 1} \right)$$th term with power m of x is

$$r = {{n\alpha - m} \over {\alpha + \beta }}$$]

Here $$\alpha = {1 \over 3}$$, $$\beta = {1 \over 2}$$ and m = 0

then $$r = {{10 \times {1 \over 3} - 0} \over {{1 \over 3} + {1 \over 2}}}$$ = $${{10} \over 3} \times {6 \over 5}$$ = 4

$$\therefore$$ T5 is the term independent of x.

$$\therefore$$ T5 = $${}^{10}{C_4}$$ = 210

Comments (0)

Advertisement