JEE MAIN - Mathematics (2011 - No. 3)

$$\mathop {\lim }\limits_{x \to 2} \left( {{{\sqrt {1 - \cos \left\{ {2(x - 2)} \right\}} } \over {x - 2}}} \right)$$
Equals $$\sqrt 2 $$
Equals $$-\sqrt 2 $$
Equals $${1 \over {\sqrt 2 }}$$
does not exist

Explanation

$$\mathop {\lim }\limits_{x \to 2} {{\sqrt {1 - \cos \left\{ {2\left( {x - 2} \right)} \right\}} } \over {x - 2}}$$

$$ = \mathop {\lim }\limits_{x \to 2} {{\sqrt 2 \left| {\sin \left( {x - 2} \right)} \right|} \over {x - 2}}$$

$$L.H.L. = \mathop {\lim }\limits_{x \to {2^ - }} {{\sqrt 2 \sin \left( {x - 2} \right)} \over {\left( {x - 2} \right)}} = - \sqrt 2 $$

$$R.H.L. = \mathop {\lim }\limits_{x \to {2^ + }} {{\sqrt 2 \sin \left( {x - 2} \right)} \over {\left( {x - 2} \right)}} = \sqrt 2 $$

Thus $$L.H.L. \ne R.H.L.$$

Hence, $$\mathop {\lim }\limits_{x \to 2} {{\sqrt {1 - \cos \left\{ {2\left( {x - 2} \right)} \right\}} } \over {x - 2}}\,\,$$ does not exist.

Comments (0)

Advertisement