JEE MAIN - Mathematics (2011 - No. 12)
The value of $$\int\limits_0^1 {{{8\log \left( {1 + x} \right)} \over {1 + {x^2}}}} dx$$ is
$${\pi \over 8}\log 2$$
$${\pi \over 2}\log 2$$
$$\log 2$$
$$\pi \log 2$$
Explanation
$$I = \int\limits_0^1 {{{8\log \left( {1 + x} \right)} \over {1 + {x^2}}}} dx$$
put $$x = \tan \,\theta ,$$
$$\therefore$$ $${{dx} \over {d\theta }} = {\sec ^2}\theta \Rightarrow dx = {\sec ^2}\theta d\theta $$
$$\therefore$$ $$I = 8\int\limits_0^{\pi /4} {{{\log \left( {1 + \tan \theta } \right)} \over {1 + {{\tan }^2}\theta }}} .{\sec ^2}\theta d\theta $$
$$I = 8\int\limits_0^{\pi /4} {\log \left( {1 + \tan \theta } \right)} d\theta \,...\left( i \right)$$
$$ = 8\int\limits_0^{\pi /4} {\log \left[ {1 + \tan \left( {{\pi \over 4} - \theta } \right)} \right]} d\theta $$
$$ = 8\int\limits_0^{\pi /4} {\log \left[ {1 + {{1 - \tan \theta } \over {1 + \tan \theta }}} \right]} d\theta $$
$$ = 8\int\limits_0^{\pi /4} {\log \left[ {{2 \over {1 + \tan \theta }}} \right]} d\theta $$
$$ = 8\int\limits_0^{\pi /4} {\left[ {\log 2 - \log \left( {1 + \tan \theta } \right)} \right]d\theta } $$
$$I = 8.\left( {\log 2} \right)\left[ x \right]_0^{\pi /4} - 8$$
$$\,\,\,\,\,\,\,\,\,\int\limits_0^{\pi /4} {\log \left( {1 + \tan \theta } \right)} d\theta $$
$$I = 8.{\pi \over 4}.\log 2 - I$$ $$\left[ {} \right.$$ From equation $$(i)$$ $$\left. {} \right]$$
$$ \Rightarrow 2I = 2\pi \log 2,$$
$$\therefore$$ $$I = \pi \log 2$$
put $$x = \tan \,\theta ,$$
$$\therefore$$ $${{dx} \over {d\theta }} = {\sec ^2}\theta \Rightarrow dx = {\sec ^2}\theta d\theta $$
$$\therefore$$ $$I = 8\int\limits_0^{\pi /4} {{{\log \left( {1 + \tan \theta } \right)} \over {1 + {{\tan }^2}\theta }}} .{\sec ^2}\theta d\theta $$
$$I = 8\int\limits_0^{\pi /4} {\log \left( {1 + \tan \theta } \right)} d\theta \,...\left( i \right)$$
$$ = 8\int\limits_0^{\pi /4} {\log \left[ {1 + \tan \left( {{\pi \over 4} - \theta } \right)} \right]} d\theta $$
$$ = 8\int\limits_0^{\pi /4} {\log \left[ {1 + {{1 - \tan \theta } \over {1 + \tan \theta }}} \right]} d\theta $$
$$ = 8\int\limits_0^{\pi /4} {\log \left[ {{2 \over {1 + \tan \theta }}} \right]} d\theta $$
$$ = 8\int\limits_0^{\pi /4} {\left[ {\log 2 - \log \left( {1 + \tan \theta } \right)} \right]d\theta } $$
$$I = 8.\left( {\log 2} \right)\left[ x \right]_0^{\pi /4} - 8$$
$$\,\,\,\,\,\,\,\,\,\int\limits_0^{\pi /4} {\log \left( {1 + \tan \theta } \right)} d\theta $$
$$I = 8.{\pi \over 4}.\log 2 - I$$ $$\left[ {} \right.$$ From equation $$(i)$$ $$\left. {} \right]$$
$$ \Rightarrow 2I = 2\pi \log 2,$$
$$\therefore$$ $$I = \pi \log 2$$
Comments (0)
