JEE MAIN - Mathematics (2010 - No. 3)

The number of complex numbers z such that $$\left| {z - 1} \right| = \left| {z + 1} \right| = \left| {z - i} \right|$$ equals :
1
2
$$\infty $$
0

Explanation

Let $$z=x+iy$$

$$\left| {z - 1} \right| = \left| {z + 1} \right|{\left( {x - 1} \right)^2} + {y^2}$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {\left( {x + 1} \right)^2} + {y^2}$$

$$ \Rightarrow {\mathop{\rm Re}\nolimits} \,z = 0\,\,\,\,\,\,\,\,\,\,\,\,\,\, \Rightarrow x = 0$$

$$\left| {z - 1} \right| = \left| {z - i} \right|{\left( {x - 1} \right)^2} + {y^2}$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {x^2} + {\left( {y - 1} \right)^2}$$

$$ \Rightarrow x = y$$

$$\left| {z + 1} \right| = \left| {z - i} \right|{\left( {x + 1} \right)^2} + {y^2}$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = {x^2} + {\left( {y - 1} \right)^2}$$

Only $$(0,0)$$ will satisfy all conditions.

$$ \Rightarrow $$ Number of complex number $$z=1$$

Comments (0)

Advertisement