JEE MAIN - Mathematics (2010 - No. 14)

Let $$f:\left( { - 1,1} \right) \to R$$ be a differentiable function with $$f\left( 0 \right) = - 1$$ and $$f'\left( 0 \right) = 1$$. Let $$g\left( x \right) = {\left[ {f\left( {2f\left( x \right) + 2} \right)} \right]^2}$$. Then $$g'\left( 0 \right) = $$
$$-4$$
$$0$$
$$-2$$
$$4$$

Explanation

$$g'\left( x \right) = 2\left( {f\left( {2f\left( x \right) + 2} \right)} \right)$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\left( {{d \over {dx}}\left( {f\left( {2f\left( x \right) + 2} \right)} \right)} \right)$$

$$ = 2f\left( {2f\left( x \right) + 2} \right)f'\left( {2f\left( x \right)} \right)$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, + \left. 2 \right).\left( {2f'\left( x \right)} \right)$$

$$ \Rightarrow g'\left( 0 \right) = 2f\left( {2f\left( 0 \right) + 2} \right).$$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,f'\left( {2f\left( 0 \right) + 2} \right).2f'\left( 0 \right)$$

$$ = 4f\left( 0 \right){\left( {f'\left( 0 \right)} \right)^2}$$

$$ = 4\left( { - 1} \right){\left( 1 \right)^2} = - 4$$

Comments (0)

Advertisement