JEE MAIN - Mathematics (2009 - No. 2)
If the mean deviation of number 1, 1 + d, 1 + 2d,........, 1 + 100d from their mean is 255, then the d is
equal to
20.0
10.1
20.2
10.0
Explanation
Mean $$\,\,\,\,\left( {\overline x } \right) = {{Sum\,\,of\,\,numbers} \over n}$$
$$ = {{{n \over 2}\left( {a + l} \right)} \over n}$$
$$ = {1 \over 2}\left( {1 + l + 100d} \right)$$
$$ = 1 + 50\,d.$$
Mean deviation (M.D) $$ = {1 \over n}\sum\limits_{i = 1}^{101} {\left| {{x_i} - \overline x } \right|} $$
$$ = {1 \over {101}}$$[ 50d + 49d + 48d + .......d + 0 + ..... + 50d]
$$ = {1 \over {101}}.2d\left( {1 + 2 + .... + 50} \right)$$
$$ = {1 \over {101}}.2d.{{50 \times 51} \over 2}$$
$$ = {{50 \times 51\,d} \over {101}}$$
Given that M.D = 255
$$\therefore\,\,\,$$ $${{50 \times 51\,d} \over {101}} = 255$$
$$ \Rightarrow \,\,\,d = {{101 \times 255} \over {51 \times 50}}$$
$$ = 10.1$$
$$ = {{{n \over 2}\left( {a + l} \right)} \over n}$$
$$ = {1 \over 2}\left( {1 + l + 100d} \right)$$
$$ = 1 + 50\,d.$$
Mean deviation (M.D) $$ = {1 \over n}\sum\limits_{i = 1}^{101} {\left| {{x_i} - \overline x } \right|} $$
$$ = {1 \over {101}}$$[ 50d + 49d + 48d + .......d + 0 + ..... + 50d]
$$ = {1 \over {101}}.2d\left( {1 + 2 + .... + 50} \right)$$
$$ = {1 \over {101}}.2d.{{50 \times 51} \over 2}$$
$$ = {{50 \times 51\,d} \over {101}}$$
Given that M.D = 255
$$\therefore\,\,\,$$ $${{50 \times 51\,d} \over {101}} = 255$$
$$ \Rightarrow \,\,\,d = {{101 \times 255} \over {51 \times 50}}$$
$$ = 10.1$$
Comments (0)
