JEE MAIN - Mathematics (2009 - No. 11)
Given $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$ such that $$x=0$$ is the only
real root of $$P'\,\left( x \right) = 0.$$ If $$P\left( { - 1} \right) < P\left( 1 \right),$$ then in the interval $$\left[ { - 1,1} \right]:$$
real root of $$P'\,\left( x \right) = 0.$$ If $$P\left( { - 1} \right) < P\left( 1 \right),$$ then in the interval $$\left[ { - 1,1} \right]:$$
$$P(-1)$$ is not minimum but $$P(1)$$ is the maximum of $$P$$
$$P(-1)$$ is the minimum but $$P(1)$$ is not the maximum of $$P$$
Neither $$P(-1)$$ is the minimum nor $$P(1)$$ is the maximum of $$P$$
$$P(-1)$$ is the minimum and $$P(1)$$ is the maximum of $$P$$
Explanation
We have $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + cx + d$$
$$ \Rightarrow P'\left( x \right) = 4\,{x^3} + 3a{x^2} + 2bx + c$$
But $$P'\left( 0 \right) = 0 \Rightarrow c = 0$$
$$\therefore$$ $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + d$$
As given that $$P\left( { - 1} \right) < P\left( a \right)$$
$$ \Rightarrow 1 - a + b + d\,\, < \,\,1 + a + b + d \Rightarrow a > 0$$
Now $$P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx = x\left( {4{x^2} + 3ax + 2b} \right)$$
As $$P'\left( x \right) = 0,$$ there is only one solution $$x = 0,$$
therefore $$4{x^2} + 3ax + 2b = 0$$ should not have any real roots i.e. $$D < 0$$
$$ \Rightarrow 9{a^2} - 32b < 0$$
$$ \Rightarrow b > {{9{a^2}} \over {32}} > 0$$
Hence $$a,b > 0 \Rightarrow P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx > 0$$
$$\forall x > 0$$
$$\therefore$$ $$P(x)$$ is an increasing function on $$\left( {0,1} \right)$$
$$\therefore$$ $$P\left( 0 \right) < P\left( a \right)$$
Similarly we can prove $$P\left( x \right)$$ is decreasing on $$\left( { - 1,0} \right)$$
$$\therefore$$ $$P\left( { - 1} \right) > P\left( 0 \right)$$
So we can conclude that
Max $$P\left( x \right) = P\left( 1 \right)$$ and Min $$P\left( x \right) = P\left( 0 \right)$$
$$ \Rightarrow P\left( { - 1} \right)$$ is not minimum but $$P\left( 1 \right)$$ is the maximum of $$P.$$
$$ \Rightarrow P'\left( x \right) = 4\,{x^3} + 3a{x^2} + 2bx + c$$
But $$P'\left( 0 \right) = 0 \Rightarrow c = 0$$
$$\therefore$$ $$P\left( x \right) = {x^4} + a{x^3} + b{x^2} + d$$
As given that $$P\left( { - 1} \right) < P\left( a \right)$$
$$ \Rightarrow 1 - a + b + d\,\, < \,\,1 + a + b + d \Rightarrow a > 0$$
Now $$P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx = x\left( {4{x^2} + 3ax + 2b} \right)$$
As $$P'\left( x \right) = 0,$$ there is only one solution $$x = 0,$$
therefore $$4{x^2} + 3ax + 2b = 0$$ should not have any real roots i.e. $$D < 0$$
$$ \Rightarrow 9{a^2} - 32b < 0$$
$$ \Rightarrow b > {{9{a^2}} \over {32}} > 0$$
Hence $$a,b > 0 \Rightarrow P'\left( x \right) = 4{x^3} + 3a{x^2} + 2bx > 0$$
$$\forall x > 0$$
$$\therefore$$ $$P(x)$$ is an increasing function on $$\left( {0,1} \right)$$
$$\therefore$$ $$P\left( 0 \right) < P\left( a \right)$$
Similarly we can prove $$P\left( x \right)$$ is decreasing on $$\left( { - 1,0} \right)$$
$$\therefore$$ $$P\left( { - 1} \right) > P\left( 0 \right)$$
So we can conclude that
Max $$P\left( x \right) = P\left( 1 \right)$$ and Min $$P\left( x \right) = P\left( 0 \right)$$
$$ \Rightarrow P\left( { - 1} \right)$$ is not minimum but $$P\left( 1 \right)$$ is the maximum of $$P.$$
Comments (0)
