JEE MAIN - Mathematics (2008 - No. 17)
The point diametrically opposite to the point $$P(1, 0)$$ on the circle $${x^2} + {y^2} + 2x + 4y - 3 = 0$$ is :
$$(3, -4)$$
$$(-3, 4)$$
$$(-3, -4)$$
$$(3, 4)$$
Explanation
The given circle is $${x^2} + {y^2} + 2x + 4y - 3 = 0$$
Center $$(-1,-2)$$
Let $$Q$$ $$\left( {\alpha ,\beta } \right)$$ be the point diametrically opposite to the point $$P(1,0),$$
then $${{1 + \alpha } \over 2} = - 1$$ and $${{0 + \beta } \over 2} = - 2$$
$$ \Rightarrow \alpha = - 3,\beta = - 4,$$ So, $$Q$$ is $$\left( { - 3, - 4} \right)$$

Center $$(-1,-2)$$
Let $$Q$$ $$\left( {\alpha ,\beta } \right)$$ be the point diametrically opposite to the point $$P(1,0),$$
then $${{1 + \alpha } \over 2} = - 1$$ and $${{0 + \beta } \over 2} = - 2$$
$$ \Rightarrow \alpha = - 3,\beta = - 4,$$ So, $$Q$$ is $$\left( { - 3, - 4} \right)$$
Comments (0)
