JEE MAIN - Mathematics (2008 - No. 13)
The value of $$cot\left( {\cos e{c^{ - 1}}{5 \over 3} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$ is :
$${{6 \over 17}}$$
$${{3 \over 17}}$$
$${{4 \over 17}}$$
$${{5 \over 17}}$$
Explanation
Given,
$$Cot\left( {so{{\sec }^{ - 1}}{5 \over 3} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$
$$ = \cot \left( {{{\tan }^{ - 1}}{3 \over 4} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$
$$ = cot\left( {{{\tan }^{ - 1}}{{{3 \over 4} + {2 \over 3}} \over {1 - {3 \over 4} - {2 \over 3}}}} \right)$$
$$ = \cot \left( {{{\tan }^{ - 1}}\left( {{{17} \over 6}} \right)} \right)$$
$$ = \cot \left( {{{\cot }^{ - 1}}{6 \over {17}}} \right)$$
$$ = {6 \over {17}}$$
$$Cot\left( {so{{\sec }^{ - 1}}{5 \over 3} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$
$$ = \cot \left( {{{\tan }^{ - 1}}{3 \over 4} + {{\tan }^{ - 1}}{2 \over 3}} \right)$$
$$ = cot\left( {{{\tan }^{ - 1}}{{{3 \over 4} + {2 \over 3}} \over {1 - {3 \over 4} - {2 \over 3}}}} \right)$$
$$ = \cot \left( {{{\tan }^{ - 1}}\left( {{{17} \over 6}} \right)} \right)$$
$$ = \cot \left( {{{\cot }^{ - 1}}{6 \over {17}}} \right)$$
$$ = {6 \over {17}}$$
Comments (0)
