JEE MAIN - Mathematics (2007 - No. 9)

Let $$I = \int\limits_0^1 {{{\sin x} \over {\sqrt x }}dx} $$ and $$J = \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx} .$$ Then which one of the following is true?
$$1 > {2 \over 3}$$ and $$J > 2$$
$$1 < {2 \over 3}$$ and $$J < 2$$
$$1 < {2 \over 3}$$ and $$J > 2$$
$$1 > {2 \over 3}$$ and $$J < 2$$

Explanation

We know that $${{\sin x} \over x} < 1,$$ for $$x \in \left( {0,1} \right)$$

$$ \Rightarrow {{\sin x} \over {\sqrt x }} < \sqrt x $$ on $$x \in \left( {0,1} \right)$$

$$ \Rightarrow \int\limits_0^1 {{{\sin x} \over {\sqrt x }}dx < \int\limits_0^1 {\sqrt x dx} = \left[ {{{2{x^{3/2}}} \over 3}} \right]} _0^1$$

$$ \Rightarrow \int\limits_0^1 {{{\sin x} \over {\sqrt x }}} dx < {2 \over 3} \Rightarrow I < {2 \over 3}$$

Also $${{\cos x} \over {\sqrt x }} < {1 \over {\sqrt x }}$$ for $$x \in \left( {0,1} \right)$$

$$ \Rightarrow \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx < \int\limits_0^1 {{x^{ - 1/2}}dx} } $$

$$\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left[ {2\sqrt x } \right]_0^1 = 2$$

$$ \Rightarrow \int\limits_0^1 {{{\cos x} \over {\sqrt x }}dx < 2} $$

$$ \Rightarrow J < 2$$

Comments (0)

Advertisement