JEE MAIN - Mathematics (2007 - No. 24)
Let $$L$$ be the line of intersection of the planes $$2x+3y+z=1$$ and $$x+3y+2z=2.$$ If $$L$$ makes an angle $$\alpha $$ with the positive $$x$$-axis, then cos $$\alpha $$ equals
$$1$$
$${1 \over {\sqrt 2 }}$$
$${1 \over {\sqrt 3 }}$$
$${1 \over 2}$$
Explanation
Let the direction cosines of line $$L$$ be $$l,m,n,$$
then $$2l+3m+n=0$$ $$\,\,\,\,\,\,\,....\left( i \right)$$
and $$l + 3m + 2n = 0\,\,\,\,\,\,\,\,\,\,....\left( {ii} \right)$$
on solving equation $$(i)$$ and $$(ii),$$ we get
$${l \over {6 - 3}} = {m \over {1 - 4}} = {n \over {6 - 3}}$$
$$\,\,\,\,\,\,\,\,\,\, \Rightarrow {l \over 3} = {m \over { - 3}} = {n \over 3}$$
Now $$ \Rightarrow {l \over 3} = {m \over { - 3}} = {n \over 3} = {{\sqrt {{l^2} + {m^2} + {n^2}} } \over {\sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {3^2}} }}$$
As $${l^2} + {m^2} + {n^2} = 1$$
$$\therefore$$ $${l \over 3} = {m \over { - 3}} = {n \over 3} = {1 \over {\sqrt {27} }}$$
$$ \Rightarrow l = {3 \over {\sqrt {27} }} = {1 \over {\sqrt 3 }},\,\,m = - {1 \over {\sqrt 3 }},n = {1 \over {\sqrt 3 }}$$
Line $$L,$$ makes an angle $$\alpha $$ with $$+ve$$ $$x$$-axis
$$\therefore$$ $$l = \cos \,\alpha \,\,\,\, \Rightarrow \,\,\,\cos \alpha \,\, = {1 \over {\sqrt 3 }}$$
then $$2l+3m+n=0$$ $$\,\,\,\,\,\,\,....\left( i \right)$$
and $$l + 3m + 2n = 0\,\,\,\,\,\,\,\,\,\,....\left( {ii} \right)$$
on solving equation $$(i)$$ and $$(ii),$$ we get
$${l \over {6 - 3}} = {m \over {1 - 4}} = {n \over {6 - 3}}$$
$$\,\,\,\,\,\,\,\,\,\, \Rightarrow {l \over 3} = {m \over { - 3}} = {n \over 3}$$
Now $$ \Rightarrow {l \over 3} = {m \over { - 3}} = {n \over 3} = {{\sqrt {{l^2} + {m^2} + {n^2}} } \over {\sqrt {{3^2} + {{\left( { - 3} \right)}^2} + {3^2}} }}$$
As $${l^2} + {m^2} + {n^2} = 1$$
$$\therefore$$ $${l \over 3} = {m \over { - 3}} = {n \over 3} = {1 \over {\sqrt {27} }}$$
$$ \Rightarrow l = {3 \over {\sqrt {27} }} = {1 \over {\sqrt 3 }},\,\,m = - {1 \over {\sqrt 3 }},n = {1 \over {\sqrt 3 }}$$
Line $$L,$$ makes an angle $$\alpha $$ with $$+ve$$ $$x$$-axis
$$\therefore$$ $$l = \cos \,\alpha \,\,\,\, \Rightarrow \,\,\,\cos \alpha \,\, = {1 \over {\sqrt 3 }}$$
Comments (0)
