JEE MAIN - Mathematics (2007 - No. 21)

The set S = {1, 2, 3, ........., 12} is to be partitioned into three sets A, B, C of equal size. Thus $$A \cup B \cup C = S,\,A \cap B = B \cap C = A \cap C = \phi $$. The number of ways to partition S is
$${{12!} \over {{{(4!)}^3}}}\,\,$$
$${{12!} \over {{{(4!)}^4}}}\,\,$$
$${{12!} \over {3!\,\,{{(4!)}^3}}}$$
$${{12!} \over {3!\,\,{{(4!)}^4}}}$$

Explanation

The total number of ways is

$${}^{12}{C_4} \times {}^{12 - 4}{C_4} \times {}^{12 - 4 - 4}{C_4} = {}^{12}{C_4} \times {}^8{C_4} \times {}^4{C_4} = {{12!} \over {{{(4!)}^3}}}$$

Comments (0)

Advertisement