JEE MAIN - Mathematics (2007 - No. 17)
For the Hyperbola $${{{x^2}} \over {{{\cos }^2}\alpha }} - {{{y^2}} \over {{{\sin }^2}\alpha }} = 1$$ , which of the following remains constant when $$\alpha $$ varies$$=$$?
abscissae of vertices
abscissae of foci
eccentricity
directrix.
Explanation
Given, equation of hyperbola is $${{{x^2}} \over {{{\cos }^2}\alpha }} - {{{y^2}} \over {{{\sin }^2}\alpha }} = 1$$
We know that the equation of hyperbola is
$${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$ Here, $${a^2} = {\cos ^2}\alpha $$ and $${b^2} = {\sin ^2}\alpha $$
We know that, $${b^2} = {a^2}\left( {{e^2} - 1} \right)$$
$$ \Rightarrow {\sin ^2}\alpha = {\cos ^2}\alpha \left( {{e^2} - 1} \right)$$
$$ \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = {\cos ^2}\alpha .{e^2}$$
$$ \Rightarrow {e^2} = 1 + {\tan ^2}\alpha = {\sec ^2}\alpha \Rightarrow e = \sec \,\alpha $$
$$\therefore$$ $$ae = \cos \alpha \,\,.\,\,{1 \over {\cos \alpha }} = 1$$
Co-ordinate of foci are $$\left( { \pm \alpha e,0} \right)\,\,$$ i.e. $$\left( { \pm 1,0} \right)$$
Hence, abscissae of foci remain constant when $$\alpha $$ varies.
We know that the equation of hyperbola is
$${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$ Here, $${a^2} = {\cos ^2}\alpha $$ and $${b^2} = {\sin ^2}\alpha $$
We know that, $${b^2} = {a^2}\left( {{e^2} - 1} \right)$$
$$ \Rightarrow {\sin ^2}\alpha = {\cos ^2}\alpha \left( {{e^2} - 1} \right)$$
$$ \Rightarrow {\sin ^2}\alpha + {\cos ^2}\alpha = {\cos ^2}\alpha .{e^2}$$
$$ \Rightarrow {e^2} = 1 + {\tan ^2}\alpha = {\sec ^2}\alpha \Rightarrow e = \sec \,\alpha $$
$$\therefore$$ $$ae = \cos \alpha \,\,.\,\,{1 \over {\cos \alpha }} = 1$$
Co-ordinate of foci are $$\left( { \pm \alpha e,0} \right)\,\,$$ i.e. $$\left( { \pm 1,0} \right)$$
Hence, abscissae of foci remain constant when $$\alpha $$ varies.
Comments (0)
