JEE MAIN - Mathematics (2007 - No. 14)

If $$p$$ and $$q$$ are positive real numbers such that $${p^2} + {q^2} = 1$$, then the maximum value of $$(p+q)$$ is
$${1 \over 2}$$
$${1 \over {\sqrt 2 }}$$
$${\sqrt 2 }$$
$$2$$

Explanation

Given that $${p^2} + {q^2} = 1$$

$$\therefore$$ $$p = \cos \theta $$ and $$q = \sin \theta $$

Then $$p+q$$ $$ = \cos \theta + \sin \theta $$

We know that

$$ - \sqrt {{a^2} + {b^2}} \le a\cos \theta + b\sin \theta \le \sqrt {{a^2} + {b^2}} $$

$$\therefore$$ $$ - \sqrt 2 \le \cos \theta + \sin \theta \le \sqrt 2 $$

Hence max. value of $$p + q$$ is $$\sqrt 2 $$

Comments (0)

Advertisement