JEE MAIN - Mathematics (2006 - No. 8)

Let $$A = \left( {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right)$$ and $$B = \left( {\matrix{ a & 0 \cr 0 & b \cr } } \right),a,b \in N.$$ Then
there cannot exist any $$B$$ such that $$AB=BA$$
there exist more then one but finite number of $$B'$$s such that $$AB=BA$$
there exists exactly one $$B$$ such that $$AB=BA$$
there exist infinitely many $$B'$$s such that $$AB=BA$$

Explanation

$$A = \left[ {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right]\,\,\,\,B = \left[ {\matrix{ a & 0 \cr 0 & b \cr } } \right]$$

$$AB = \left[ {\matrix{ a & {2b} \cr {3a} & {4b} \cr } } \right]$$

$$BA = \left[ {\matrix{ a & 0 \cr 0 & b \cr } } \right]\left[ {\matrix{ 1 & 2 \cr 3 & 4 \cr } } \right] = \left[ {\matrix{ a & {2a} \cr {3b} & {4b} \cr } } \right]$$

Hence, $$AB=BA$$ only when $$a=b$$

$$\therefore$$ There can be infinitely many $$B's$$

for which $$AB=BA$$

Comments (0)

Advertisement