JEE MAIN - Mathematics (2006 - No. 20)

If $$x$$ is real, the maximum value of $${{3{x^2} + 9x + 17} \over {3{x^2} + 9x + 7}}$$ is
$${1 \over 4}$$
$$41$$
$$1$$
$${17 \over 7}$$

Explanation

$$y = {{3{x^2} + 9x + 17} \over {3{x^2} + 9x + 7}}$$

$$3{x^2}\left( {y - 1} \right) + 9x\left( {y - 1} \right) + 7y - 17 = 0$$

$$D \ge 0$$ as $$x$$ is real

$$81{\left( {y - 1} \right)^2} - 4 \times 3\left( {y - 1} \right)\left( {7y - 17} \right) \ge 0$$

$$ \Rightarrow \left( {y - 1} \right)\left( {y - 41} \right) \le 0$$

$$ \Rightarrow 1 \le y \le 41$$

$$\therefore$$ Max value of $$y$$ is $$41$$

Comments (0)

Advertisement