JEE MAIN - Mathematics (2006 - No. 17)
The value of $$\sum\limits_{k = 1}^{10} {\left( {\sin {{2k\pi } \over {11}} + i\,\,\cos {{2k\pi } \over {11}}} \right)} $$ is :
i
1
- 1
- i
Explanation
$$\sum\limits_{k = 1}^{10} {\left( {\sin {{2k\pi } \over {11}} + i\cos {{2k\pi } \over {11}}} \right)} $$
$$ = i\sum\limits_{k = 1}^{10} {\left( {\cos {{2k\pi } \over {11}} - i\,\sin {{2k\pi } \over {11}}} \right)} $$
$$ = i\sum\limits_{k = 1}^{10} {{e^{ - {{2k\pi } \over {11}}}}} i = i\left\{ {\sum\limits_{k = 0}^{10} {{e^{ - {{2k\pi } \over {11}}}}} - 1} \right\}$$
$$ = i\left[ {1 + {e^{ - {{2\pi } \over {11}}i}} + e - {{4\pi } \over {11}}i + .....11\,\,terms} \right] - i$$
$$ = i\left[ {{{1 - {{\left( {{e^{ - {{2\pi } \over {11}}}}} \right)}^{11}}} \over {1 - {e^{ - {{2\pi } \over {11}}i}}}}} \right] - i$$
$$ = i\left[ {{{1 - {e^{ - 2\pi i}}} \over {1 - {e^{ - {{2\pi } \over {11}}i}}}}} \right] - i$$
$$ = i \times 0 - i$$
[as $$\,\,\,\,\,\,$$ $${e^{ - 2\pi i}} = 1$$ ]
$$ = - i$$
$$ = i\sum\limits_{k = 1}^{10} {\left( {\cos {{2k\pi } \over {11}} - i\,\sin {{2k\pi } \over {11}}} \right)} $$
$$ = i\sum\limits_{k = 1}^{10} {{e^{ - {{2k\pi } \over {11}}}}} i = i\left\{ {\sum\limits_{k = 0}^{10} {{e^{ - {{2k\pi } \over {11}}}}} - 1} \right\}$$
$$ = i\left[ {1 + {e^{ - {{2\pi } \over {11}}i}} + e - {{4\pi } \over {11}}i + .....11\,\,terms} \right] - i$$
$$ = i\left[ {{{1 - {{\left( {{e^{ - {{2\pi } \over {11}}}}} \right)}^{11}}} \over {1 - {e^{ - {{2\pi } \over {11}}i}}}}} \right] - i$$
$$ = i\left[ {{{1 - {e^{ - 2\pi i}}} \over {1 - {e^{ - {{2\pi } \over {11}}i}}}}} \right] - i$$
$$ = i \times 0 - i$$
[as $$\,\,\,\,\,\,$$ $${e^{ - 2\pi i}} = 1$$ ]
$$ = - i$$
Comments (0)
